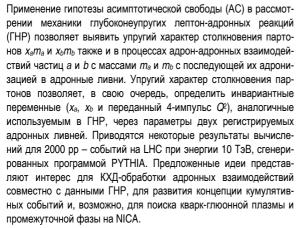


УДК 530.145

АСИМПТОТИЧЕСКАЯ СВОБОДА В МЕХАНИКЕ НЕУПРУГИХ СТОЛКНОВЕНИЙ СОСТАВНЫХ ЧАСТИЦ ПРИ ВЫСОКИХ ЭНЕРГИЯХ

Н.Г. Фадеев

Объединенный инстиут ядерных исследований, лаборатория физики высоких энергий, Дубна E-mail: fadeev@sunse.jinr.ru



Ключевые слова: асимптотическая свобода, глубоконеупругие процессы рассеяния, упругие столкновения партонов, инвариантные переменные.

Asymptotic Freedom into the Mechanics of Composite Particle Inelastic Collisions at High Energies

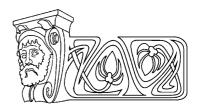
N.G. Fadeev

The application of the asymptotic freedom hypothesis to consider the mechanics of deep inelastic scattering processes (DIS), allows one to reveal the elastic form of the parton $(x_a m_a \text{ and } x_b m_b)$ scattering also for hadron-hadron interactions of particles a and b having masses m_a and m_b with subsequent hadronization of them into the hadron showers. The elastic character of the parton scattering, in its turn, helps to define invariant variables analogoues to DIS (Bjorken x_a , x_b and square four-momentum transfer Q^2) through the two-hadron showers in the c.m.s. of a and b particles. Some results of calculations of 2000 pp-interactions at LHC at 10 TeV generated by PYTHIA, are presented. This approach can be of interest for QCD-treatment of hh-interactions, cumulative phenomena investigations, search quark-gluon plasma and phase transition in project NICA.

Key words: asymptotic freedom, deep inelastic scattering processes, elastic parton scattering, invariant variables.

Введение

Известно, что явление масштабной инвариантности (бьёркеновского скейлинга), обнаруженное в исследованиях взаимодействий частиц при высоких энергиях с участием лептонов [1–5] (отмеченных Нобелевской



премией по физике за 1990 г.), потребовало для своего объяснения качественно новых представлений о внутренней структуре адронной материи (партоны, кварки, глюоны) и о самом механизме взаимодействия её составляющих. Как известно, в этом механизме достойная роль принадлежит гипотезе асимптотической свободы (АС) [6-8] (также отмеченной Нобелевской премией по физике за 2004 год). Гипотеза АС послужила основой для применения методов квантовой электродинамики в описании сильных взаимодействий и способствовала формулировке квантовой хромодинамики (КХД). «Самое важное следствие асимптотической свободы - это сама по себе КХД с точечно-подобным поведением кварков на малых расстояниях и сильным взаимодействием, дающим конфаймент на больших расстояниях» c.1316].

Распространение новых идей на столкновения адронов и релятивистских ядер привело к предсказанию, а затем обнаружению и систематическому исследованию кумулятивного эффекта, представляющего собой результат обобществления партонов (или кварков), принадлежащих группе нуклонов [9]. В основном предположении о кумулятивном эффекте содержится допущение о возможности образования группы (капли) из N конституентов (нуклонов, кварков или партонов) [9]. Вероятность существования групп конституентов не только в ядрах, но и в нуклонах представляется естественной. Таким образом, единая кварк-глюонная природа партонов как составляющих адронов вместе с КХД нашла своё приложение в разнообразных процессах взаимодействия частиц независимо от их природы.

Следует отметить, однако, что реакции ГНР принципиально и выгодно отличаются от адрон-адронных (hh) и тем более адронядерных (hA) и ядро-ядерных (AA) взаимодействий тем, что измерение характеристик состояний одной частицы - лептона - до и после рассеяния оказывается достаточным для проведения широкого круга исследований и структуры адронов, и механизма взаимодействия конституентов. Эта особенность ГНР обусловлена тем фактом, что лептоны принято считать точечными частицами, не имеющими структуры и, главное, они не участвуют в сильных взаимодействиях. В частности поэтому, некоторые кинематические инварианты ГНР, имеющие важное значение в КХД, например, квадрат переданного 4-импульса Q^2 и бьёркеновский инвариант x – в адрон-адронных столкновениях отсутствуют и до сих пор не установлены общепринятые способы их определения через другие наблюдаемые величины. Поэтому, несмотря на внутреннее единство в структуре и природе происходящих процессов при столкновении различных частиц, для их описания привлекается разный набор кинематических переменных. Устоявшимися переменными для (lh), (lA)-взаимодействий являются, как отмечалось, бьёркеновский х и Q^2 , а феймановский x_F и квадрат поперечного импульса P_{T}^{2} – для (hh), (hA), (AA)взаимодействий.

Между тем первоначально выявленная характерная особенность процессов рассеяния лептонов на нуклонах позволяет все перечисленные выше реакции рассматривать с единой точки зрения и применять (в определённых случаях изучения адрон-адронных процессов) тот же набор кинематических пременных, что и в ГНР. Имеется в виду двухэтапный характер процессов ГНР, когда на первом этапе происходит упругое рассеяние лептона на свободном партоне нуклона, а на втором этапе происходит адронизация партонов в наблюдаемые адроны (партонная модель Фейнмана, рис. 1) [4]. Именно гипотеза асимптотической свободы и предположение А.М. Балдина о возможности образования в составных системах групп (капель)

партонов дают основания ожидать возникновения первого этапа - упругого рассеяния групп партонов, и второго этапа – их адронизации также и в реакциях столкновения составных частиц (адронов и ядер) при высоких энергиях. В свою очередь, упругий характер столкновения партонов (или их групп) в процессах взаимодействия составных частиц при высоких энергиях обеспечивает возможность оценки тех же инвариантных переменных, используемых в ГНР, через параметры зарегистрированных адронных ливней. Эта возможность имеет достаточно общее и ясное физическое обоснование и так же, как другой способ оценки похожих кинематических переменных, изложенный в работе [10], её можно использовать при анализе кумулятивных явлений.

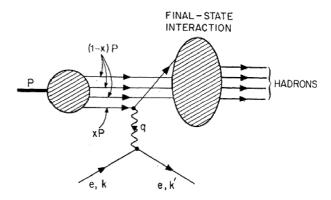


Рис. 1. Кинематика лептон-нуклонного рассеяния в партонной модели [5]

Двухэтапный характер неупругих процессов и особенности определения бьёркеновских переменных для адрон-адронных реакций можно наглядно выразить при помощи представления механики (кинематики) сталкивающихся частиц в пространстве скоростей (быстрот) [11]. Определённая польза от такого представления состоит (например, в сравнении с рис. 1) в возможности привлечения аппарата гиперболической тригонометрии, который полностью адекватен релятивистской механике. Поэтому неприменение или игнорирование геометрии пространства скоростей «затрудняет понимание самой релятивистской механики» [11, с.773]. В последующем изложении отмеченная особенность будет неоднократно продемонстрирована.

Целесообразно начать рассмотрение представлений с хорошо изученных реакций с участием лептонов, т.е. с ГНР. Затем, выделив неизвестные ранее и нужные для дальнейшего особенности механики ГНР, можно перейти к рассмотрению и адрон-адронных взаимодействий.

Для справочных целей можно отметить несколько полезных моментов. Энергию Eчастицы и величину её импульса Р согласно их определению можно выразить через массу m частицы и её быстроту ρ/c :

$$E = m / \sqrt{1 - \beta^2} = m \operatorname{ch} \rho ,$$

$$P = m\beta / \sqrt{1 - \beta^2} = m \operatorname{sh} \rho ,$$

$$\beta = \operatorname{th} \rho , \quad c = 1,$$
(1)

где β - скорость частицы в единицах скорости света с. Скалярное произведение двух 4-векторов K_a и K_b частиц a и b можно записать в виде:

$$K_a K_b = E_a E_b - |\mathbf{P}_a| |\mathbf{P}_b| \cos \theta =$$

$$= m_a m_b (\cosh \rho_a \cosh \rho_b - \sinh \rho_a \sinh \rho_b \cos \theta) = (2)$$

$$= m_a m_b \cosh \rho_{ab},$$

где θ – угол между импульсами (скоростями, быстротами ρ_a и ρ_b) частиц a и b, ρ_{ab} – быстрота между частицами а и b, определяющая их относительную скорость.

Выражение в скобках в (2) известно в неевклидовой геометрии Лобачевского как основное соотношение между сторонами треугольника: по двум сторонам и углу между ними определяется длина третьей стороны - теорема косинусов. Это же выражение соответствует преобразованию Лоренца для энергии частицы (чтобы в этом убедиться, нужно в (2) вынести за скобку $ch\rho_b$ и использовать определение (1)). Преобразование Лоренца для импульса также нетрудно найти, используя гиперболическую тригонометрию для соответствующих треугольников. При использовании (2) выражения для квадрата суммы и квадрата разности двух 4-векторов частиц a и b, выраженных через быстроту рав:

$$(K_a + K_b)^2 = K_a^2 + 2K_a K_b + K_b^2 =$$

$$= m_a^2 + 2 m_a m_b \cosh \rho_{ab} + m_b^2 \equiv M^2, \qquad (3)$$

$$(K_a - K_b)^2 = K_a^2 - 2 K_a K_b + K_b^2 =$$

$$= m_a^2 - 2 m_a m_b \cosh \rho_{ab} + m_b^2 \equiv q^2 \qquad (4)$$

(т.е. выражения для квадрата эффективной массы двух частиц и квадрата переданного ими 4-импульса представляются очевидными).

Асимптотическая свобода

в механике лептон-нуклонных взаимодействий

Рассмотрим инклюзивную реакцию рассеяния частицы а (лептона – электрона или мюона) на частице b (нуклоне):

$$a+b \rightarrow a+X$$
, (5)

и введём соответствующие этой реакции 4-вектора и некоторые обозначения:

$$K_a + K_b = K_a' + K_x,$$

 $q_a = K_a - K_a', \quad v = E_a - E_a',$ (6)
 $-q_a^2 \equiv Q^2, \quad S = (K_a + K_b)^2,$

где K_x — 4-вектор адронного ливня (который в этих реакциях обычно не регистрируется), q_a – переданный 4-импульс, определяемый через параметры лептона, v - переданная энергия, S - квадрат полной энергии. В принятых обозначениях бьёркеновский инвариант х определяется обычным образом через параметры лептона и массу частицы b (нуклона) – m_b :

$$x = Q^2 / (2q_a K_b) = Q^2 / (2m_b v),$$
 (7)

$$Q^2 = 2m_a^2 (\cosh \rho_q - 1),$$
 (8)

где m_a – масса частицы a (лептона), ρ_a – быстрота лептона в антилабораторной системе, лабораторная система (л.с.) связана с частицей b – нуклоном. Отметим, что инвариант xможно определить таким же образом и через компоненты 4-вектора K_x , как это следует из законов сохранения (6):

$$q_b = K_x - K_b,$$

$$-q_b^2 = 2M_x m_b \cosh \rho_{Mx} - M_x^2 - m_b^2, \qquad (9)$$

$$M_x^2 = K_x^2, \quad -q_a^2 = -q_b^2,$$

где ρ_{Mx} – быстрота адронного ливня, л.с.; M_{x} — его эффективная масса.

Согласно гипотезе асимптотической свободы (AC), с ростом передачи Q^2 взаимодействие конституентов между собой в нуклоне асимптотически ослабевает (на малых расстояниях друг от друга), и потому лептон (как фундаментальная, точечная частица) рассеивается на свободном конституенте партоне упругим (квазиупругим) образом

Физика 19

(4)

(как фотон рассеивается на «свободном» электроне атома в комптон-эффекте). То есть первый этап глубоконеупругого рассеяния лептона на нуклоне состоит в упругом рассеянии лептона на свободном партоне (или некой группе партонов). Обозначим 4-импульс партона (или группы партонов) через x_gK_b (x_g — часть, доля 4-импульса мишени, характеризующая группу партонов), а оставшуюся часть через $(1-x_g)K_b(x_gm_b$ и $(1-x_g)m_b$ — в системе покоя b-частицы) и покажем средствами релятивистской механики, что x_g определяется выражением (7) и, следовательно, совпадает с x.

Закон сохранения энергии-импульса (6) с учётом высказанной гипотезы АС можно записать в виде

$$K_{a} + x_{g}K_{b} + (1 - x_{g})K_{b} =$$

$$= K_{a}' + (x_{g}K_{b})' + (1 - x_{g})K_{b} = K_{a}' + K_{x}, (10)$$

$$q_{a} = K_{a} - K_{a}' = (x_{g}K_{b})' - x_{g}K_{b} = K_{x} - K_{b},$$

$$K_{x} = (x_{g}K_{b})' + (1 - x_{g})K_{b}, (11)$$

$$S_{x} = (K_{a} + x_{g}K_{b})^{2} = (K_{a}' + (x_{g}K_{b})')^{2} =$$

$$= m_{a}^{2} + 2m_{a}x_{g}m_{b} \operatorname{ch} \rho_{a} + (x_{g}m_{b})^{2} \approx x_{g}S, (12)$$

где $x_g K_b$, $(1 - x_g) K_b$ и $(x_g K_b)$ ' есть 4-вектора свободных партонов до и после упругого рассеяния, S_x — полная энергия упругого рассеяния, ρ_a — быстрота налетающего лептона (при высоких энергиях величины S и S_x определяются в основном значением ρ_a , она же определяет и ось реакции).

Правая часть первого равенства в (10) соответствует промежуточному состоянию и выражает первый этап реакции – упругое рассеяние лептона на партоне, правая часть второго равенства в (10) выражает второй этап – результат адронизации, т.е. конечное

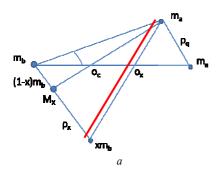
состояние рассматриваемой реакции. Из (11) следует, что: а) переданный 4-вектор q_a можно определить не только через параметры лептона но и через соответствующие параметры партона, принявшего участие в упругом рассеянии: $q_a = (x_g K_b)' - x_g K_b$; б) адронную массу K_x в конечном состоянии можно выразить также через параметры промежуточного состояния — возбуждённого партона $(x_g K_b)'$ и партона $(1-x_g) K_b$, не участвовавшего в упругом рассеянии.

Все три состояния процесса рассеяния начальное, конечное, промежуточное и отмеченные выше особенности - легко просматриваются на рис. 2, а, на котором изображена реакция ГНР в пространстве скоростей. Промежуточное состояние, соответствующее (по требованию АС) упругому рассеянию, как обычно находится из начального состояния путём поворота оси реакции (совпадающей с отрезком $m_b m_a$ на рис. 2, a) относительно центра масс сталкивающихся частиц на некоторый определённый угол. В соответствии с АС полная энергия упругого взаимодействия (12) и система центра масс (точка O_x на рис. 2, a) должны определяться массой лептона m_а и массой «свободного» партона (или массой группы партонов) $x_g m_b$.

Положение точки O_x на оси реакции нетрудно найти из условия сохранения быстроты лептона относительно O_x (энергии, величины импульсов и массы частиц в упругом рассеянии не изменяются). Тогда из треугольника с вершинами в точках O_x , m_b , m_a (см. рис. 2,a) по теореме косинусов находим:

$$ch(\rho_a - \rho_{Ox}) =$$

$$= ch\rho_{Ox} ch\rho' - sh\rho_{Ox} sh\rho' cos\theta, \qquad (13)$$



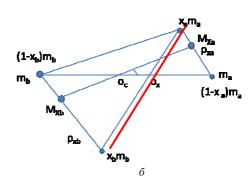


Рис. 2. Механика lh(a) и $hh(\delta)$ взаимодействий в пространстве скоростей

где ρ_a и ρ ' – быстрота лептона в начальном и конечном состоянии (обе в л.с.), ρ_{Ox} – быстрота, соответствующая искомой скорости центра O_x (в л.с.) и ($\rho_a - \rho_{Ox}$) – быстрота лептона относительно O_x , θ – угол рассеяния лептона (в л.с.). Из (13) находим известное выражение для системы Брейта:

$$th \rho_{Ox} = (ch \rho_a - ch \rho') / (sh \rho_a - sh \rho' cos \theta) =$$

$$= v/(P_a - P_L), \qquad (14)$$

где P_a — начальный импульс лептона, P_L — продольный импульс лептона в конечном состоянии (в л.с.). Далее можно поступить двояким образом.

а) можно воспользоваться обычным выражением для скорости центра масс сталкивающихся частиц как отношение полного импульса к полной энергии (в л.с.):

$$\beta_{Ox} = P_a / (E_a + x_g m_b) , \qquad (15)$$

где E_a — начальная энергия лептона. Приравняя (14) и (15) и решив полученное уравнение относительно x_g , находим (7), т.е. $x_g \equiv x$;

б) можно воспользоваться уравнением сохранения импульса в системе центра масс с началом в O_x ,

$$x_g m_b \operatorname{sh} \rho_{Ox} = m_a \operatorname{sh} (\rho_a - \rho_{Ox}), \qquad (16)$$

решая которое относительно x_g , вновь находим (7). Следовательно, введенный в (10) параметр x_g , характеризующий партон или группу конституентов, является инвариантом Бьёркена (индекс g дальше можно не использовать).

Определив (14), можно найти и (ρ_a – ρ_{Ox}) – быстроту лептона относительно O_x , и угол поворота оси реакции в точке O_x . Для завершения восстановления трапеции упругого столкновения и тем самым восстановления промежуточного состояния в реакциях ГНР остаётся найти величину ρ_x – быстроту (скорость) выбитого (свободного) партона х m_b в л.с. Это можно сделать разными путями, но для дальнейшего представляется важным получить выражение для Q^2 через х и ρ_x .

Из выражения для q_a в (11) следует формула

$$Q^{2} = -(K_{a} - K_{a}')^{2} = -((xK_{b})' - xK_{b})^{2} =$$

$$= 2(xm_{b})^{2} (\operatorname{ch}\rho_{x} - 1), \tag{17}$$

определяющая величину Q^2 через параметры партона, аналогичная выражению (8), определяющему величину Q^2 через параметры лептона. Отметим, что из (17) можно найти выражение для сh ρ_x (и значит, для скорости партона) и переданной ему энергии ν :

$$v = Q^2/(2xm_b) = (xm_b)(\cosh\rho_x - 1),$$
 (18)

т.е. вся переданная лептоном энергия есть кинетическая энергия выбитого партона.

Таким образом, переменная Бьёркена x определяет ту часть массы мишени xm_b , на которой лептон (частица a) рассеивается упруго.

Второй этап рассеяния заключается в адронизации партонов в наблюдаемые частицы — в адронный ливень. Эффективную массу адронного ливня M_x (в ГНР её принято обозначать через W) определяют из законов сохранения, т.е. из (6) имеем известное выражение

$$W^{2} \equiv M_{x}^{2} \equiv K_{x}^{2} = m_{b}^{2} + 2m_{b}v - Q^{2} =$$

$$= m_{b}^{2} + Q^{2}(1 - x)/x.$$
(19)

Другую формулу для W^2 найдём, если в (19) подставим вместо Q^2 его выражение через x и ρ_x из (17):

$$M_x^2 = m_b^2 [x^2 + 2x(1-x)\operatorname{ch}\rho_x + (1-x)^2], (20)$$

т.е. вся родившаяся на втором этапе неупругого рассеяния адронная масса частиц может быть представлена через параметры промежуточного состояния (первого этапа), а именно эффективные массы выбитого партона $x m_b$ и оставшегося партона-спектатора $(1-x)m_b$ (заметим, что выражения (17), (18) и (20) являются новыми и в основном обязаны применению геометрии пространства скоростей).

Новое выражение (20) интересно тем, что оно, во-первых, является функцией двух переменных x и ρ_x и, во-вторых, тем, что оно соответствует двум уравнениям, выражающим закон сохранения энергии и импульса при распаде M_x на две частицы с массами xm_b и $(1-x)m_b$. Например, для эффектиной массы M_x в её системе покоя имеем (см. рис. 2, a):

$$M_x = (1 - x)m_b \cosh \rho_{Mx} + xm_b \cosh (\rho_x - \rho_{Mx});$$

(1 - x)m_b sh \rho_{Mx} = xm_b sh(\rho_x - \rho_{Mx}), (21)

Физика 21

где ρ_{Mx} – быстрота адронной массы M_x в л.с. Следовательно, если известны (измерены) M_x и ρ_{Mx} (т.е. 4-вектор адронного ливня K_x), то, решив систему (21), найдём x и ρ_x :

С учётом (9) формула (22) полностью совпадает с (7), т.е. она определяет инвариант x через параметры адронного ливня.

Таким образом, регистрируя (измеряя) 4-вектор адронного ливня (конечного результата этапа адронизации), можно восстановить результат первого этапа — этапа упругого рассеяния лептона на партоне (на части мишени) $x m_b$, где x — инвариант Бьёркена. В заключение запишем (22) в ещё более удобном для обобщения виде:

$$x = -q_b^2/(2q_bK_b) =$$

$$= Q^2/(2K_xK_b - 2K_b^2 - K_x^2 + K_x^2) =$$

$$= Q^2/(Q^2 + K_x^2 - K_b^2) \approx 1/(1 + M_x^2/Q^2), (24)$$

где в знаменателе слагаемым ${K_b}^2/Q^2$ пренебрегли, полагая $Q^2 \gg {K_b}^2$.

Асимптотическая свобода в механике нуклон-нуклонных взаимодействий

При столкновении двух составных систем, обладающих структурой, например двух нуклонов, определить систему центра масс сталкивающихся партонов (как в случае с пучковым лептоном) не представляется возможным. Однако и здесь полагают, что гипотеза асимптотической свободы справедлива. Это означает, что при больших передачах сталкивающиеся партоны (или части нуклонов) частиц a и $b - x_a m_a$ и $x_b m_b$ – свободны (взаимодействие конституентов внутри нуклона почти отсутствует, и они не связаны энергия связи много меньше переданной энергии). Поэтому партоны рассеиваются в системе их центра масс упругим образом (см. рис. 2, δ), а спектаторы $(1-x_a)m_a$ и $(1-x_b)m_b$ в этом (упругом) взаимодействии участия не принимают:

$$K_a + K_b = (1 - x_a)K_a + x_aK_a + x_bK_b + (1 - x_b)K_b =$$

$$= (1 - x_a)K_a + (x_aK_a)' + (x_bK_b)' + (1 - x_b)K_b =$$

$$= K_{va} + K_{vb}, \qquad (25)$$

где, как и в (11), штрихами обозначены упруго рассеянные партоны. (Для удобства их можно назвать активными партонами, а спектаторы — пассивными партонами.) В системе центра масс частиц a и b следует ожидать рождение двух противоположно направленных адронных ливней (струй) K_{xa} и K_{xb} . По аналогии с ГНР (см. формулу (20)) каждый из них можно выразить через соответствующую пару активных и пассивных партонов (см. рис. $2, \delta$):

$$K_{xa}^2 \equiv M_{xa}^2 = [(x_a K_a)^2 + (1 - x_a) K_a]^2 =$$
 $= m_a^2 [x_a^2 + 2x_a (1 - x_a) \operatorname{ch} \rho_{xa} + (1 - x_a)^2], (26)$
 $K_{xb}^2 \equiv M_{xb}^2 = [(x_b K_b)^2 + (1 - x_b) K_b]^2 =$
 $= m_b^2 [x_b^2 + 2x_b (1 - x_b) \operatorname{ch} \rho_{xb} + (1 - x_b)^2], (27)$
где ρ_{xa} – быстрота партона $x_a m_a$ (в системе

где ρ_{xa} – быстрота партона $x_a m_a$ (в системе покоя a-частицы) и ρ_{xb} – быстрота партона $x_b m_b$ (в системе покоя b-частицы).

Аналогично ГНР, зная (измеряя) 4-вектора адронных ливней K_{xa} и K_{xb} , можно найти неизвестные x_a и x_b по формуле (24), в которой $q_a = -(K_{xa} - K_a)$, $q_b = -(K_{xb} - K_b)$, т.е.

$$x_a = -q_a^2/(2q_aK_a) \approx 1/(1 + M_{xa}^2/Q^2),$$

 $x_b = -q_b^2/(2q_bK_{yb}) \approx 1/(1 + M_{xb}^2/Q^2).$ (28)

При этом, как следует из (25), должно выполняться равенство

$$-q_a^2 = -q_b^2 = Q^2. (29)$$

Таким образом, практически задача сводится к выполнению следующих двух условий для нуклон-нуклонных событий:

- 1) регистрация (измерение) всего адронного ливня M_r ;
- 2) возможность его разделения в системе центра масс сталкивающихся частиц a и b на две части M_{xa} и M_{xb} .

Полагая, что каждый из ливней соответствует своей паре партонов на первом этапе взаимодействия (см. формулы (26)–(27)), можно оценить x_a , x_b и Q^2 по формулам (28)–(29).

Очевидно, наиболее вероятными кандидатами в такие события являются двухструйные события. Очевидно также, что и в двухструйных событиях адронные ливни M_{xa} и M_{xb} могут перекрываться в системе центра масс. Однако с ростом энергии это перекрытие может оказаться не столь чувствитель-

ным к значениям величин, подлежащих оценке. Поэтому второе условие представляется выполнимым при высоких энергиях, когда вторичные частицы рождаются в основном в двух направлениях, соответствующих сталкивающимся пучкам. Современные установки, ориентированные на энергии адронного коллайдера в ЦЕРН, могут соответствовать отмеченным условиям и сделанным предположениям.

Для иллюстрации подхода на рис. 3-7 представлены некоторые результаты обработки 2000 событий рр-взаимодействий на LHC при энергии в с.ц.м. 10 ТэВ, сгенерированных программой РҮТНІА. События отбирались без требований на выполнение строгого соответствия с экспериментальной выборкой (сечением), и результаты имеют демонстрационный характер. В каждом событии разбиение на два ливня производилось в с.ц.м. по знаку продольного импульса вторичной частицы, т.е. вперёд (положительная полусфера, соответствующая величина на рисунке имеет индекс а) и назад (отрицательная полусфера, соответствующая величина на рисунке имеет индекс b). Для каждого ливня вычислялись: эффективная масса, бьёркеновский инвариант х и переданный 4-импульс согласно предложенному алгоритму. Также для каждого события извлекались переменные x_1 и x_2 , определённые программой РҮТНІА (в соответствии с требованиями КХД), и вычислялась энергия упругого взаимодействия (эффективная масса) активных партонов S_{rab} :

$$S_{xab} = (x_a K_a + x_b K_b)^2 =$$

$$= m_b^2 (x_a^2 + 2x_a x_b \cosh \rho_0 + x_b^2) \approx x_a x_b S, \quad (30)$$

где $\rho_{\rm o}$ – быстрота между налетающими нуклонами, m_b – масса нуклона.

На рисунках представлены следующие распределения: рис. 3, a — по эффективным массам M_{xa} и M_{xb} , δ — совместное их распределение; рис. 4, a — по бъёркеновским x_a и x_b , δ — совместное их распределение; рис. 5, a — по переданному 4-импульсу Q_a^2 , Q_b^2 , δ — совместное их распределение; рис. δ — по переменным x_1 и x_2 , сгенерированным программой РҮТНІА; рис. δ — по эффективной массе активных партонов δ .

Результаты показывают, что распределения величин, вычисленных в соответствии с предложенным алгоритмом, находятся в физически разрешённых пределах. Как и ожидалось, выполняется требуемое условие (29) (см. рис. 5, δ) и не совпадают распределения для x_a , x_b (см. рис. 4) и для x_1 , x_2 (см. рис. 6), полученных по разным алгоритмам. Из представленных результатов следует, что инварианты, определённые через параметры зарегистрированных адронных ливней, представляют интерес и могут быть использованы как наблюдаемые для изучения взаимодействий на LHC.

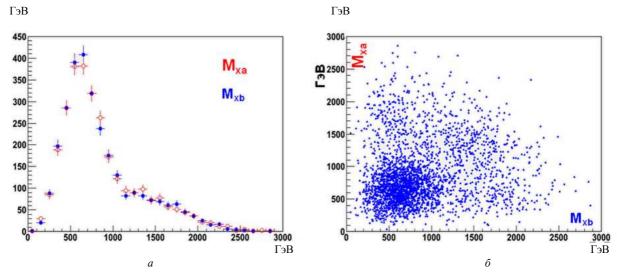


Рис. 3. $M_{xa}\left(a\right)$ и $M_{xb}\left(\delta\right)$ распределения для pp-столкновений при 10 ТэВ

Физика 23

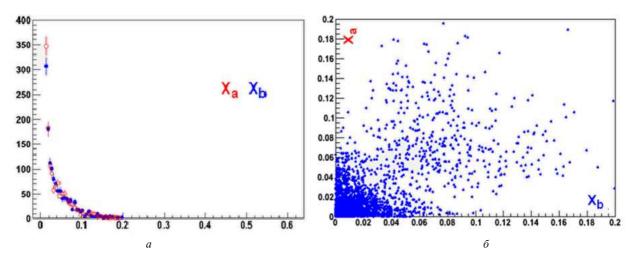


Рис. 4. $x_a(a)$ и x_{e} -распределения (б) для pp-столкновений при 10 ТэВ

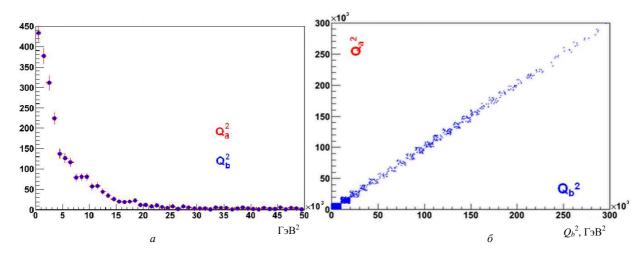


Рис. 5. $Q_a^{\ 2}(a)$ и $Q_b^{\ 2}$ -распределения (б) для pp-столкновений при 10 ТэВ

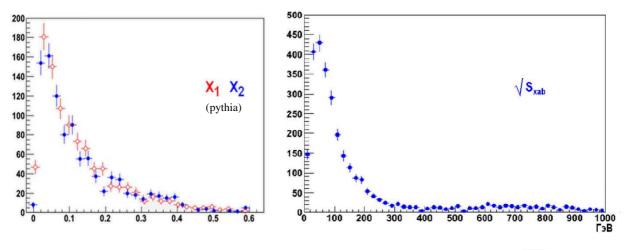


Рис. 6. Распределения по x_1, x_2

Рис. 7. Распределение по $\sqrt{S_{xab}}$

Заключение

Рассмотрено применение гипотезы AC в механике столкновения составных частиц при высоких энергиях. Показано, что AC обусловливает (как и модель Фейнмана) двухэтапный механизм взаимодействия: упругое рассеяние групп конституентов на первом этапе с последующей их адронизацией на втором; сами группы конституентов x_g совпадают с партонами Бьёркена x.

Показано, что упругий характер столкновения партонов позволяет, в свою очередь, определить инвариантные переменные (x_a , x_b и переданный 4-импульс Q^2), аналогичные используемым в ГНР, через параметры двух регистрируемых адронных ливней.

Предложенный подход может представлять интерес для КХД-обработки совместных данных ГНР и адронных взаимодействий (global fit), для развития концепции кумулятивных событий, поиска кварк-глюонной плазмы и промежуточной фазы на NICA (здесь требуется дополнительное изучение).

Автор выражает благодарность В.В. Кухтину, О.В. Рогачевскому, А.П. Чеплакову и Н.Д. Джавадову за полезные обсуждения и помощь в работе.

Список литературы

- 1. *Тэйлор Р.Э.* Глубоконеупругое рассеяние: Ранние годы // УФН. 1991. Т.161. С.39–73.
- 2. *Кендалл Г.У.* Глубоконеупругое рассеяние: Эксперименты на протоне и наблюдение скейлинга // УФН. 1991. Т.161. С.75–106.
- 3. Фридман Дж.Ф. Глубоконеупругое рассеяние: сравнение с кварковой моделью // УФН. 1991. Т.161. С.106–128.
- 4. Feynman R. Very High-Energy Collisions of Hadrons // Phys. Rev. Lett. 1969. Vol.23. P.1415–1417.
- 5. *Bjorken J.D., Paschos E.* Inelastic Electron-Proton and γ -Proton Scattering and the Structure of the Nucleon // Phys. Rev. 1969. Vol.185. P.1975–1982.
- 6. *Gross D.J., Wilczek F.* Ultraviolet Behavior of Non-Abelian Gauge Theories // Phys. Rew. Lett. 1973. Vol.30. P.1343–1346.
- 7. *Politzer H.D.* Reliable Perturbative Results for Strong Interactions? // Phys. Rew. Lett. 1973. Vol.30. P.1346–1349.
- 8. Гросс Д.Дж. Открытие асимптотической свободы и появление КХД // УФН. 2005. Т.175. С.1306–1318.
- 9. Балдин А.М. Физика релятивистских ядер // ЭЧАЯ. 1977. Т.8. С.429–477.
- 10. Балдин А.М., Балдин А.А. Релятивистская ядерная физика: пространство относительных 4-скоростей, симметрии решений, принцип ослабления корреляций, подобие, промежуточные асимптотики // ЭЧАЯ. 1998. Т.29. С.577–630
- 11. Черников H.А. Геометрия Лобачевского и релятивистская механика // ЭЧАЯ. 1973. Т.4. С.773-810.

Физика 25