

29. *Holstein-Rathlou N.-H., Marsh D.J.* A dynamic modelof the tubuloglomerular feedback echanism // Amer. J. Physiol. 1990. Vol.258. P.F1448–F1459.

30. Chen Yu-Ming, Kay-Pong Yip, Marsh D.J., Holstein-Rathlou N.-H. Magnitude of TGF-initiated nephron-nephron interactions is increased in SHR // Amer. J. Physiol. 1995. Vol.269. P.F198–F204.

31. Postnov D.E., Sosnovtseva O.V., Mosekilde E., Holstein-Rathlou N.-H. Cooperative phase dynamics in coupled nephrons // Intern. J. Mod. Phys. B. 2001. Vol.15. P.3079–3098.

32. Постнов Д., Шишкин А., Щербаков П. Нелинейные эффекты в ансамблях осцилляторов со связью через распределение ресурса. Ч.І. Динамические режимы авторегуляции кровотока в васкулярном дереве нефронов // Изв. вузов. ПНД. 2007. Т.15, №5. С.3–22.

33. Постнов Д., Шишкин А., Щербаков П. Нелинейные эффекты в ансамблях осцилляторов со связью через распределение ресурса. Ч.П. Колебательные режимы одномерного массива связанных через общий источник питания осцилляторов // Изв. вузов. ПНД. 2007. Т.15, №5. С.23–35.

34. Postnov D.E., Shishkin A.V., Sosnovtseva O.V., Mosekilde E. Two-mode chaos and synchronization properties // PRE. 2005. Vol.72. P.056208.

35. Van-der-Pol B. Forced oscillations in a circuit with nonlinear resistance // Phil. Mag. 1927. Vol.3. P. 64-80.

36. Postnov D.E., Sosnovtseva O.V., Scherbakov P.A., Mosekilde E. Multimode dynamics in a network with resource mediated coupling // CHAOS. 2008. Vol. 18. P. 015114.

37. Постнов Д.Э., Жирин Р.А. Свидетельство об официальной регистрации программы для ЭВМ №2007614145. 2007.

38. Sosnovtseva O.V., Postnov D.E., Nekrasov A.M., Mosekilde E., Holstein-Rathlou N.-H. Phase multistability of selfmodulated oscillations // Phys. Rev. E. 2002. Vol.66. P.0362.

39. Постнов Д.Э., Некрасов А.М. Механизмы фазовой мультистабильности при синхронизации 3D осцилляторов // Изв. вузов. ПНД. 2005. Т.13, №1–2. С.47–62.

40. *Некрасов А.М.* Фазовая мультистабильность в диффузионно связанных нелинейных осцилляторах: Дис. ... канд. физ.-мат. наук. Саратов, 2007. 160 с.

УДК 539.196.3

МОДЕЛИРОВАНИЕ СТРУКТУРЫ И КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ КИСЛОРОДОСОДЕРЖАЩИХ СОЕДИНЕНИЙ. 1. СПИРТЫ

П.М. Элькин, Т.А. Шальнова*, О.Н. Гречухина*

Саратовский государственный технический университет E-mail: pashaelkin@yandex.ru

* Астраханский государственный университет

На примере молекулы метанола описывается методика учета ангармонических резонансов при построении структурно-динамических моделей кислородосодержащих соединений.

Ключевые слова: колебательные спектры, структурно-динамические модели, ангармонические резонансы, метод DFT, метанол.

MODELING OF STRUCTURE AND VIBRATION SPECTRA FOR OXYGEN SUBSTITUTED COMPOUNDS. 1. SPIRITS

P.M. Elkin, T.A. Shalnova, O.N. Grechuhina

The article describes the methods of accounting of anharmonic resonancies in structural dynamic models oxygen substituted compounds on the example of methanole.

Keywords: vibration spectra, anharmonic resonancies, structural dynamic model, DFT method, methnol.

Введение

Построение структурно-динамических моделей сложных молекулярных соединений, связанное с анализом их адиабатических потенциалов, — одна из основных задач молекулярного моделирования.

Существуют две методики решения таких задач. Первая основана на решении обратных колебательных задач [1], вторая использует неэмпирические квантовые методы оценки геометрической и электронной структуры молекул [2].

Достоверность полученных результатов подтверждается согласием с имеющимися экспериментальными данными по колебательным спектрам и физической непротиво-

речивостью рассчитанных параметров адиабатического потенциала, одним из критериев которого является сравнимость системы силовых постоянных для родственных по электронной структуре молекулярных фрагментов. Этот факт служит обоснованием правомерности схемы переноса системы силовых постоянных из простых соединений в сложные. На нем основана известная методика фрагментарного расчета колебательных спектров сложных молекулярных соединений [3]. Недостатки этой методики, как и всего подхода, основанного на решении обратных колебательных задач, подробно описаны в [4].

Использование неэмпирических квантовых расчетов для анализа параметров адиабатического потенциала наталкивается на проблему выбора метода и базиса расчета [5]. Большинство исследователей отдает предпочтение методам функционала плотности (DFT-методам) [6]. В выборе базиса ситуация иная. Основным критерием здесь служит хорошее совпадение результатов расчета фундаментальных колебательных состояний с экспериментом. Базис подбирается на основании численного эксперимента для простых молекул, а затем используется в предсказательных расчетах сложных соединений, включающих указанные выше молекулярные фрагменты.

Для кислородосодержащих соединений ситуация иная. Для ряда простых молекул до настоящего времени нет устоявшейся интерпретации фундаментальных состояний [1]. Имеет место смещение полос при проведении эксперимента для различных фазовых состояний. Кислородосодержащие соединения легко образуют димеры.

Отработка методики использования современных компьютерных технологий в моделировании геометрической структуры и колебательных спектров для различных кислородосодержащих соединений является предметом данной публикации. Объект исследования – спирты. Начнем с метанола.

Анализ колебательных состояний

Метиловый спирт (CH₃OH) – молекулярное соединение, хорошо изученное методами колебательной спектроскопии [1]. Приведенная в монографии [1] интерпретация колебательного спектра метанола и дейтерозамещенных метанола считается весьма надежной. Гармоническое силовое поле является «эффективным», поскольку получено на основании решения обратной механической задачи.

Учитывая возможную неоднозначность решений таких задач, следует провести неэмпирические квантовые расчеты параметров адиабатического потенциала (силовых постоянных) метанола в ангармоническом приближении теории молекулярных колебаний.

Моделирование параметров адиабатического потенциала осуществлялось в рамках метода функционала плотности DFT-b2LYP для 12-ти различных базисных наборов от 6-31G(d) до 6-311++G(d,p). Результаты такого вычислительного эксперимента приведены в табл. 1–7.

Молекула метилового спирта (рисунок) имеет плоскость симметрии и принадлежит группе симметрии C_s . Колебания распределены по двум типам симметрии Γ =8A⁺+ 4A[°]. Геометрические параметры молекулы, определенные микроволновым методом, имеют значения [1]: R_{co} =1.43 Å; R_{OH} =0.96 Å; R_{CH} =1.10 Å; A_{COH} =108.9°; A_{HCH} =109.1°.

Молекула метилового спирта

Оптимизация геометрии в любом из перечисленных базисов дает отклонение от эксперимента для длин связей не более 0.01 Å, для валентных углов $\sim 0.7^{\circ}$.

Первый этап методики моделирования параметров адиабатического потенциала состоит в расчете гармонических силовых постоянных для указанного выше базисного набора и выявлении тех фундаментальных колебаний, для которых может иметь место резонансное взаимодействие (резонанс Ферми) [7]. Для метанола такие данные представлены в табл. 1.

Таблица 1

Влияние базиса на расчетные значения в гармоническом приближении фундаментальных частот колебаний

	6-31G(d) -	- 6-311G(d	l,p)	6	-31+G(d) -	- 6-311+G((d,p)	6-31++G(d) - 6-311++G(d,p)				
3755	3825	3790	3838	3763	3839	3788	3846	3760	3837	3787	3846	
3132	3122	3116	3103	3142	3133	3124	3112	3141	3132	3124	3112	
2997	2989	2980	2974	3011	3003	2994	2989	3010	3003	2994	2989	
1542	1527	1528	1508	1527	1511	1522	1506	1526	1510	1521	1505	
1511	1500	1501	1489	1496	1484	1491	1480	1495	1484	1491	1480	
1400	1385	1395	1379	1369	1355	1370	1357	1369	1354	1368	1357	
1097	1095	1089	1085	1077	1072	1072	1071	1077	1072	1071	1071	
1067	1062	1060	1053	1052	1047	1049	1042	1051	1046	1048	1042	
3039	3034	3020	3015	3059	3055	3041	3037	3059	3055	3041	3037	
1525	1508	1512	1492	1517	1501	1511	1495	1516	1499	1509	1494	
1183	1179	1177	1168	1178	1173	1177	1169	1176	1171	1176	1168	
344	335	353	329	323	316	319	300	322	314	316	300	

Достоверность найденного силового поля проверяется на расчете частот фундаментальных колебаний для дейтерозамещенных метилового спирта по методике, предложенной в [8]. Результаты приведены в табл. 2. После масштабирования [9] набора вычисленных частот фундаментальных (v_m) колебаний имеет место хорошее совпадение указанных частот с экспериментальным отнесением.

Таблица 2

Интерпретация колебательных спектров метилового спирта и его дейтерозамещенных

Форма		CH ₃ OH			CH ₃ OD			CD ₃ OH		CD ₃ OD		
колебания	v _{exp}	ν_{h}	ν_{m}	v _{exp}	ν_h	ν_{m}	v _{exp}	ν_{h}	ν_{m}	v _{exp}	ν_h	ν_{m}
				Ко	олебания т	гипа симм	етрии А'					
q _{OH}	3687	3846	3627	2720	2780	2663	3690	3820	3627	2724	2782	2665
q _{CH}	2973	3112	2973	2965	3115	2976	2235	2309	2221	2228	2308	2220
q _{CH}	2845	2989	2859	2840	2972	2843	2077	2135	2057	2080	2135	2057
β _{ОСН}	1475	1505	1458	1475	1515	1468	1081	1082	1052	1083	1090	1060
β _{ОСН}	1425	1480	1434	1327	1484	1438	-	1151	1118	1071	1082	1052
β _{СОН}	1345	1357	1316	865	882	859	1297	1327	1287	775	788	768
Восн	1070	1071	1041	1210	1260	1223	858	874	851	1029	1067	1038
Qco	1034	1042	1013	1041	1055	1026	988	1001	974	983	997	970
				Кс	олебания т	гипа симм	етрии А"					
q _{CH}	2973	3037	2903	2965	3025	2892	2235	2244	2160	2228	2244	2160
Восн	1455	1494	1447	1458	1497	1450	1134	1083	1053	1135	1160	1127
В осн	1160	1168	1135	1160	1165	1132	890	901	877	888	901	877
XX	270	300	294	-	261	256	-	311	304	-	239	234

Примечание. Отнесение основано на расчетах в базисе 6-311++G(d,p).

Как видно из табл. 1, для предварительной теоретической интерпретации колебательного спектра метилового спирта в гармоническом приближении можно пользоваться любым базисом, поскольку энергетическая щель между частотами колебаний значительно превышает величину смещения колебательного уровня за счет выбора базиса.

Отметим тот факт, что расчетные данные в табл. 1 практически не отличаются для соответствующих базисных наборов, учитывающих диффузионные эффекты (+, ++).

В технологии «Gaussian» [5] по умолчанию ферми-резонансы между фундаментальными (v_i) и составными состояниями ($v_i + v_k$) рассматриваются в случае, если энергетическая щель между ними не превышает 10 см^{-1} .

Как видно из табл. 1, резонансное взаимодействие имеет место для валентных колебаний связи СН метильной группы (v₃ и v₉) и составных тонов деформационных колебаний этих же связей ($v_4 + v_5$; $v_4 + v_{10}$; $v_5 + v_{10}$). Расчеты с использованием технологии «Gaussian-03», подтверждают сказанное. Указанные резонансы и базисы, в которых они учитываются по умолчанию, представлены в табл. 3. Кроме указанных резонансов имеются резонансы между основными состояниями v_4 , v_5 и обертоном $v_{11} + v_{12}$. Однако последние за счет возмущения, вносимого соответствующей кубической силовой постоянной F_{ijk}, расходятся на величину, не превышающую 15 см⁻¹, что меньше смещений, вызванных сменой базиса расчета. Поэтому мы их не приводим.

Таблица 🗄	3
-----------	---

6_31_d			2974	1492	1492	3	10	10		
9	5	10	2796	18.46	2901	2989	1495	1495		
3039	3039 1511 1525		6-31+_d	_p		2863	19.51	2907		
2877	18.42	2967	3	5	4	6-311++_d_p				
6_31_d_p			3003	1484	1511	3	5	4		
9	4	10	2861	-10.91	2921	3003	1484	1510		
3034	1527	1508	3	10	10	2853	-10.78	2919		
2903	16.15	2961	3003	1501	1501	3	10	10		
6_311_d			2861	20.50	2916	3003	1499	1499		
9	5	10	6_311+_	d		2853	21	2914		
3020	1501	1512	9	4	10	6-311++	_d_p			
2858	17.16	2948	3041	1522	1511	3	5	4		
6_311_d_p			2897	17.23	2958	2989	1480	1505		
3	5	5	6-311++	_d_p		2858	-10.78	2909		
2974	1489	1489	3	5	4	3	10	10		
2796	39.68	2904	2989	1480	1506	2989	1494	1494		
3	10	10	2863	-10.97	2910	2858	19.54	2904		

Влияние резонансов Ферми на интерпретацию валентных колебаний связей СН

Анализ данных, представленных в табл. 4, показывает, что резонансное взаимодействие приводит к расхождению взаимодействующих колебательных состояний до величины ~110 см⁻¹, что находится в удовлетворительном согласии с предложенным в монографии [1] экспериментальным отнесением для колебаний v₃ и v₉. Для ряда базисов энергетическая щель между фундаментальными состояниями v_3 и v_9 и обертонами $v_4 + v_5$; $v_4 + v_{10}$; $v_5 + v_{10}$ превышает 10 см⁻¹. По умолчанию, технология «Gaussian-03» не рассматривает взаимодействие между ними как учет резонансов Ферми, а смещение колебательных состояний рассчитывается в рамках адиабатической те-

Таблица 4

Влияние ангармонизма колебани	й на смещение	фундаментальных полос
-------------------------------	---------------	-----------------------

	6-31G(d) - 6-3110	i(d,p)		6-31+G(d) - 6-311	+G(d,p)		6-31++G(d) - 6-311++G(d,p)				
ν	Xii	Xii	Xii	Xii	Xii	Xii	Xii	Xii	Xii	Xii	Xii	Xii	
1	-203	-199	-219	-201	-204	-199	-219	-201	-203	-199	-219	-201	
2	-131	-128	-129	-128	-128	-125	-125	-123	-128	-125	-125	-123	
3	-63.5	-61.8	-64.9	-63.7	-61.9	-60.2	-62.2	-60.9	-62.0	-60.2	-62.3	-60.9	
4	8.7	14.8	8.1	23.9	20.5	53.9	14.1	43.6	21.8	61.8	15.4	48.6	
5	68.6	174	69.2	-7.8	-116	-68.8	-176	-75.0	-111	-67.5	-171	-73.8	
6	-16.2	-15.1	-17.5	-16.0	-15.6	-14.8	-16.5	-15.6	-15.6	-14.8	-16.4	-15.6	
7	-7.4	-8.9	-1.8	-3.6	-4.9	-6.0	-2.5	-3.5	-5.1	-6.1	-2.4	-3.4	
8	-9.4	-7.8	-14.5	-13.2	-11.6	-10.4	-12.9	-12.8	-11.4	-10.3	-13.0	-12.8	
9	-84.9	-83.4	-84.7	-84.1	-85.1	-84.1	-83.4	-82.6	-85.1	-84.1	-83.4	-82.6	
10	-9.9	0.2	-7.0	-11.6	3.9	-11.3	-0.3	-11.4	5.2	-11.3	1.5	-11.2	
11	-4.8	-5.0	-5.2	-4.9	-4.6	-4.7	-4.9	-4.6	-4.4	-4.6	-4.8	-4.5	
12	-32.5	-30.3	-43.2	-33.2	-41.0	-36.5	-52.6	-38.3	-40.6	-36.2	-50.2	-37.4	
ν	Xi	Xi	Xi	Xi	Xi	Xi	Xi	Xi	Xi	Xi	Xi	Xi	
1	2.2	2.3	-1.1	4.0	-4.9	-5.2	-3.7	2.0	-5.1	-5.6	-3.6	1.8	
2	-32.1	-38.2	-33.1	-36.4	-46.1	-50.7	-45.7	-45.9	-46.3	-51.1	-46.1	-46.2	
3	-265	-426	-264	-181	-58.1	-132	42.7	-107	-70.7	-144	32.5	-116	
4	-67.8	-74.8	-75.4	-86.0	-88.1	-132	-79.5	-121	-90.1	-143	-80.9	-127	
5	-139	-282	-139	-39.9	109	44.6	190	52.9	102	42.9	184	51.2	
6	-40.0	-40.3	-39.1	-41.9	-44.8	-45.3	-44.1	-45.7	-44.8	-45.4	-44.8	-46.4	
7	-16.5	-16.9	-17.8	-19.9	-18.1	-18.4	-16.0	-18.1	-17.9	-18.4	-16.1	-18.4	
8	-24.5	-23.8	-24.5	-24.6	-25.7	-26.0	-24.4	-24.4	-25.4	-25.9	-24.4	-24.4	
9	-130	-86.4	-130	-73.1	-62.8	-97.0	-105	-92.2	-68.1	-97.8	-63.1	-93.4	
10	-41.8	-55.5	-43.4	-38.1	-61.0	-41.1	-52.3	-40.0	-62.8	-41.0	-54.2	-39.8	
11	-31.4	-31.8	-31.3	-32.3	-33.0	-33.3	-32.9	-33.9	-32.8	-33.1	-32.7	-33.7	
12	32.3	30.7	32.0	31.5	23.8	22.1	32.3	33.5	24.3	22.2	33.0	33.6	

ории возмущения второго порядка. Данные приведены в табл. 5, 6. У колебательного состояния v₃ такое смещение для ряда базисов может достигать ~ 250 см^{-1} . За рамки адиабатической теории Борна–Оппенгеймера [10] ($\Delta < 0.1 \text{ v}_3$) этот результат не выходит, однако приводит к расхождению с экспериментом ~ 100 см^{-1} .

Надо отметить, что и в этом случае расхождение с экспериментальным отнесением меньше, чем расчеты в гармоническом приближении. Остается выяснить, за счет чего в таких базисах имеет место расхождение с экспериментом все-таки существенное для задач идентификации соединений по их колебательным спектрам. Это заключительный этап методики.

Обратимся к ангармоническим поправкам, определяющим сдвиг фундаментальных полос колебаний (см. табл. 4). Указанные поправки получаются из известного выражения [11] для колебательных состояний

 $\langle \rangle$

$$E^{(\mathbf{V})} = \omega_{s} (v_{s} + g_{s} / 2) +$$
(1)
+ $\chi_{sr} (v_{s} + 1/2)(v_{r} + 1/2)(1 + 1/2\delta_{sr}),$
 $X_{ii} = 9/4 \chi_{ii}; \quad X_{i} = 3/4 \Sigma \chi_{ir}.$ (2)

Таблица 5

		ν_{h}	ν_{m}	ν_{anh}	ИК	КР	ν_{h}	ν_{m}	ν_{anh}	ИК	КР
Форма колебаний	v _{exp} [1] (ИК)			6_31	G_d; 6_3	61G_d,p;6	6_311G_d	6_311G_	d,p		
колеоании			Ν	Іинимум				Ν	Лаксимум		
q _{OH}	3687c.	3755	3567	3575	7.99	71.1	3838	3644	3662	20.9	79.7
q _{CH}	2973o.c.	3103	2964	2964	34.2	70.2	3132	2992	2994	38.6	77.6
q _{CH}	2845c.	2974	2844	2649	63.9	119	2997	2866	2781	71.7	143
β_{CH3}	1475cp.	1508	1461	1472	3.87	14.6	1542	1493	1504	4.24	20.5
β_{CH3}	1425сл.	1489	1443	1454	5.38	5.89	1511	1464	1479	7.47	9.34
β _{СОН}	1345c.	1379	1338	1337	25.2	2.53	1400	1357	1359	29.9	4.31
β _{СН3}	1070	1085	1055	1069	1.42	5.28	1097	1066	1079	7.59	7.23
Qco	1034o.c.	1053	1024	1025	116	0.69	1067	1038	1043	120	2.63
q _{OH}	2973o.c.	3015	2883	2854	82.2	67.9	3039	2905	2898	93.2	79.2
β_{CH3}	1455cp.	1492	1445	1456	1.51	15.3	1525	1477	1488	2.93	21.9
β _{СН3}	1160сл.	1168	1134	1142	0.39	5.20	1183	1149	1158	0.62	8.36
xx	270	329	322	320	122	3.22	353	345	337	143	4.23
		6_31+G_	d; 6_31+0	G_d,p;6_3	11+G_d;	6_311+G	_d,p				
q _{OH}	3687c.	3763	3575	3579	12.6	71.4	3846	3650	3668	30.2	80.2
q _{CH}	2973o.c.	3112	2973	2972	27.3	72.1	3142	3001	2996	30.4	73.7
q _{CH}	2845c.	2989	2859	2853	68.0	134	3011	2879	2967	73.8	146
β_{CH3}	1475cp.	1506	1459	1464	5.11	11.5	1527	1479	1487	5.17	12.6
β _{CH3}	1425сл.	1480	1434	1448	4.99	4.06	1496	1449	1465	7.56	5.30
β _{СОН}	1345c.	1355	1314	1311	20.9	2.37	1370	1328	1326	24.2	3.10
β_{CH3}	1070	1071	1041	1055	0.20	7.18	1077	1047	1060	2.33	7.92
Qco	1034o.c.	1042	1014	1015	127	1.70	1052	1023	1025	134	2.26
q _{OH}	2973o.c.	3037	2903	2893	63.4	79.5	3059	2923	2941	71.5	83.3
β_{CH3}	1455cp.	1495	1448	1458	2.75	11.2	1517	1470	1480	3.67	12.5
β _{CH3}	1160сл.	1169	1136	1142	0.22	3.13	1178	1144	1152	0.33	4.08
xx	270	300	294	289	135	1.02	323	317	303	155.	1.62
		6_31++G	_d; 6_31+	+G_d,p;6	_311++0	G_d;6_311	1++G_d,p				
q _{OH}	3687c.	3760	3572	3576	12.4	75.1	3846	3650	3668	30.0	82.4
q _{CH}	2973o.c.	3112	2973	2972	27.3	74.3	3141	3000	2995	30.6	76.9
q _{CH}	2845c.	2989	2859	2845	68.1	151	3010	2878	2960	74.3	159
β_{CH3}	1475cp.	1505	1458	1463	4.97	12.5	1526	1478	1486	5.18	13.7
β_{CH3}	1425сл.	1480	1434	1448	5.06	4.05	1495	1449	1465	7.72	5.39
β_{COH}	1345c.	1354	1313	1310	20.9	2.68	1369	1327	1325	24.1	3.26
β _{CH3}	1070	1071	1041	1055	0.20	7.46	1077	1047	1060	2.67	8.52
Qco	1034o.c.	1042	1013	1014	127	1.40	1051	1022	1024	133.	2.18
q _{OH}	2973o.c.	3037	2903	2901	63.5	81.5	3059	2923	2937	72.3	86.8
β_{CH3}	1455cp.	1494	1447	1457	2.49	12.7	1516	1469	1479	3.31	13.96
β_{CH3}	1160сл.	1168	1135	1141	0.23	3.81	1176	1142	1150	0.37	4.88
xx	270	300	293	289	134	1.43	322	315	302	154	2.19

Влияние базиса на расчетные значения частот колебаний, см⁻¹, и интенсивностей метилового спирта (ИК, Км/Моль, КР, Å⁴аем)

Примечание. с – сильная, о.с. – очень сильная, ср. – средняя, сл. – слабая. Интенсивности в ИК спектрах в Км/Моль, в КР – Å⁴аем.

Таблица б

Вычисленные значения кубических силовых постоянных F_{ijk} метилового спирта (в см⁻¹) для различных базисных наборов

I	J	к	6-31 G(d)	6-31 G(d.p)	6-311 G(d)	6-311 G(d.p)	6-31+ G(d)	6-31+ G(d.p)	6-311+ G(d)	6-311+ G(d.p)	6-31++ G(d)	6-31++ G(d.p)	6-311++ G(d)	6-311++ G(d.p)
1	1	1	2622	2635	2662	2620	2618	2625	2650	2612	2615	2624	2651	2612
2	2	2	-1827	-1803	-1818	-1802	-1790	-1758	-1768	-1745	-1789	-1755	-1768	-1744
3	2	2	-496.1	-521.6	-457.2	-472.4	-554.4	-589.1	-529.0	-551.6	-554.6	-591.7	-529.2	-552.6
3	3	2	228.5	228.5	218.2	220.7	234.0	233.3	225.9	227.7	234.0	233.3	226.0	227.7
3	3	3	-1250	-1244	-1251	-1237	-1235	-1227	-1229	-1214	-1235	-1226	-1228	-1214
5	5	3	165.7	165.4	157.7	158.7	174.3	177.2	168.4	172.6	174.8	177.7	169.1	173.4
9	9	2	366.8	379.1	339.7	349.5	403.9	422.8	383.4	397.8	404.0	424.4	383.6	398.4
9	9	3	-1386	-1377	-1373	-1363	-1380	-1371	-1359	-1350	-1380	-1370	-1359	-1350

Примечание. Даны кубические силовые постоянные, определяющие ангармоническое смещение валентных колебаний связей СН и ОН.

Таблица 7

Вычисленные значения квартичных силовых постоянных F_{ijkl} метилового спирта (в см⁻¹) для различных базисных наборов

				6-31	6-31	6-311	6-311	6-31+	6-31+	6-311+	6-311+	6-31++	6-31++	6-311++	6-311++
Ι	J	Κ	L	G(d)	G(d.p)	G(d)	G(d.p)	G(d)	G(d.p)	G(d)	G(d.p)	G(d)	G(d.p)	G(d)	G(d.p)
1	1	1	1	1616	1616	1571	1558	1594	1585	1544	1536	1592	1585	1544	1536
2	2	2	2	1001	998	984	980	980	971	957	950	980	970	956	949
3	3	3	3	451	456	444	436	438	4409	429	420	438	4403	429	420
4	4	3	3	-165	-163	-156	-163	-160	-158	-152	-157	-161	-158	-152	-157
5	5	2	2	-216	-221	-218	-222	-208	-212	-209	-208	-208	-212	-207	-207
5	5	3	3	-133	-129	-127	-124	-140	-137	-134	-133	-140	-137	-134	-134
9	9	3	3	522	522	505	502	513	511	494	491	512	510	494	491
9	9	4	4	-234	-237	-228	-231	-230	-233	-226	-228	-230	-234	-226	-227
9	9	5	5	-142	-137	-136	-133	-151	-148	-144	-144	-151	-148	-145	-145
9	9	9	9	591	595	570	570	590	593	567	567	590	593	566	567
10	10	2	2	-258	-253	-245	-248	-256	-253	-244	-246	-257	-254	-245	-247

Примечание. Даны квартичные силовые постоянные, определяющие ангармоническое смещение валентных колебаний связей СН и ОН.

Видно, что диагональные поправки X_{ii} существенно зависят от базиса только для деформационных колебаний связей СН (v_4 , v_5). Для поправок X_i такая зависимость имеет место для колебаний v_3 , v_4 , v_5 , v_9 . Это как раз те колебания, для которых возможно резонансное взаимодействие с обертонами.

Выражение для ангармонических постоянных χ_{ii} состоит из трех слагаемых [11]:

$$\chi_{ii} = \frac{1}{4} \{ 6F_{iiii} - 15(F_{iii})^2 / v_i - \Sigma(F_{iij})^2 / \frac{1}{v_i(8v_i^2 - 3v_i^2)/(4v_i^2 - v_i^2)} \}.$$
(3)

Последнее слагаемое имеет резонансный знаменатель, за счет которого проявляется существенный разброс значений поправок X_{ii} для колебаний связей CH (v₄, v₅). Схожая ситуация и для ангармонических постоянных χ_{ij} :

$$\chi_{ij} = \frac{1}{4} \{F_{iijj} - 6(F_{iij}F_{ijj}/v_i) - 4F_{iij}^2 [v_i/(4v_i^2 - v_j^2)] - \Sigma (F_{iik} - F_{kjj}/v_k) - F_{ijk}v_k (v_k^2 - v_i^2 - v_j^2) / [(v_i + v_k + v_k) (v_i + v_k - v_k) (v_i - v_k + v_k) (v_i - v_k - v_k)]\}.$$
(4)

Второе и четвертое слагаемые содержат резонансные знаменатели, что отражается на величинах ангармонических поправок, приведенных в табл. 4.

Для колебательных состояний, энергетическая щель между которыми меньше 10 см⁻¹, как сказано выше, теория возмущений сводится к учету резонанса Ферми. Расхождение резонирующих уровней определяется соотношением [12]

$$E = \{ (v_i + v_j + v_k) \pm (K_{ijk}^2 (1 + \delta_{jk})/2 + ((v_i - v_j - v_k)^2)^{1/2} \}/2.$$
(5)

Приведенные в табл. 3 расчетные данные иллюстрируют применение соотношения (5). Для базисов, которые не вошли в табл. 3, расхождение с экспериментом для частот валентных колебаний связей СН (v_3 , v_9) достигает ~100 см⁻¹, для остальных не превышает 50 см⁻¹ (см. табл. 5, 6).

Интересным представляется сравнение вычисленных в различных базисах кубических и квартичных силовых постоянных, входящих в выражения для ангармонических постоянных χ_{ij} . Такие данные приведены в табл. 6, 7. Влияние базиса явно несущественно. Следовательно, основная причина расхождения экспериментальных значений фундаментальных состояний с модельными расчетами заключается в выборе барьера учета резонансного взаимодействия. Его увеличение исключит имеющиеся существенные отклонения расчетных значений фундаментальных частот колебаний от экспериментальных данных.

Иными словами, учет резонансного взаимодействия для определенной группы колебаний надо осуществлять в любом базисе. В этом случае выбор базиса для теоретической интерпретации фундаментальных колебательных состояний не будет иметь решающего значения. Для предсказательных расчетов подобный ответ может быть дан только после проведения модельных расчетов для конкретного класса соединений. Тем не менее для метилового спирта предпочтение следует отдать базису 6-311++G (d,p).

Выводы

1. Неэмпирические квантовые методы позволяют дать достоверную оценку гармонической системы силовых постоянных метилового спирта. Операцию масштабирования следует рассматривать как возможность качественного учета эффектов ангармоничности.

2. Выбор атомного базиса в рамках метода функционала плотности DFT-b3LYP несущественно сказывается на значениях ангармонических параметров разложения адиабатического потенциала (кубические и квартичные силовые постоянные). Подбор энергетической щели для учета резонансного взаимодействия (резонанса Ферми) колебательных состояний позволяет устранить имеющееся расхождение экспериментальных и расчетных значений валентных фундаментальных колебаний метильной группы, осуществить корректное использование адиабатической теории возмущения второго порядка, получить достоверные значения ангармонических постоянных для оценки обертонных состояний.

3. Выбор базиса не сказывается на оценке геометрии молекулы метилового спирта. Расхождение экспериментальных данных по геометрии с соответствующими вычисленными значениями длин валентных связей и валентных углов не выходит за рамки точности микроволновых методов в оценке геометрии молекул.

4. Расчетные значения интенсивностей в спектрах ИК и КР зависят от выбора базиса. Однако качественная оценка указанных молекулярных параметров при этом не меняется.

Список литературы

1. Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. М.: Наука, 1970. 559 с.

2. *Минкин В.И.* Теория строения молекул. Ростов н/Д: Феникс, 1997. 386 с.

3. Грибов Л.А., Дементьев В.А. Методы и алгоритмы вычислений в теории колебательных спектров молекул. М.: Наука, 1981. 356 с.

4. *Березин В.И.* Прямые и обратные задачи спектроскопии циклических и комплексных соединений: Дис. ... д-ра физ.-мат. наук. Саратов, 1983. 336 с.

5. Frisch M.J., Trucks G.W., Schlegel H.B et al. Revision A.7. Gaussian. Inc., Pittsburgh (PA), 2003.

6. Yoshida H., Takeda K., Okamura J., Ehara A., Matsuura H. A New Approach to Vibrational Analysis of Large Molecules by Density Functional Theory: Wavenumber-Linear Scaling Method // J. Phys. Chem. A. 2002. Vol.106, №14. P.3580– 3586

7. *Лисица М.П., Яремко А.М.* Резонанс Ферми. Киев: Наук. думка, 1984. 250 с.

8. Элькин П.М. Квантовомеханический анализ эффектов ангармоничности в многоатомных молекулах: Дис. ... канд. физ.-мат. наук. Саратов, 2005. 176 с.

9. Краснощеков С.В., Степанов Н.Ф. Масштабирующие множители как эффективные параметры для коррекции неэмпирического силового поля // Журнал физ. химии. 2007. Т.81, №4. С.680–689.

10. Браун П.А., Киселев А.А. Введение в теорию колебательных спектров. Л.: Изд-во ЛГУ, 1983. 223 с.

11. *Nielsen H.H.* The vibration-rotation energies of molecules and their spectra in the infrared // Handbook der Physik. 1957. Bd.37, №1. S.173–313.

12. Герцберг Г. Электронные спектры и строение многоатомных молекул. М.: Мир, 1969. 772 с.