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The paper describes the spatio-temporal dynamics of a lattice that is given by a 2D N x N network
of nonlocally coupled Nekorkin maps which model neuronal activity. The network behavior is
studied for periodic and no-flux boundary conditions. It is shown that for certain values of the
coupling parameters, rotating spiral waves and spiral wave chimeras can be observed in the
considered lattice. We analyze and compare statistical and dynamical characteristics of the local
oscillators from coherence and incoherence clusters of a spiral wave chimera. Furthermore,
effects of mutual and external synchronization of spiral wave structures in two coupled such
lattices are studied. We show numerically that spiral wave structures, including spiral wave
chimeras, can be synchronized and establish the mechanism of their synchronization. Our
numerical studies indicate that when the coupling strength between the lattices is sufficiently
weak, only a certain part of oscillators of the interacting networks is imperfectly synchronized,
while the other part demonstrates a partially synchronous behavior. If the spatiotemporal pat-
terns in the lattices do not include incoherent cores, imperfect synchronization is realized for
most oscillators above a certain value of the coupling strength. In the regime of spiral wave
chimeras, the imperfect synchronization of all oscillators cannot be achieved even for sufficiently
large values of the coupling strength.
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1. Introduction

When studying the behavior of complex ensembles and networks of
coupled nonlinear oscillators, the formation of various spatio-temporal
patterns and their evolution are in the focus of research in nonlinear
dynamics with applications to physics, chemistry, biology, and beyond
[1-18].

In the last 15 years, the attention of specialists in nonlinear dynamics
and related scientific fields was focused on the studies of so-called “chi-
mera states” [19-22]. These states are characterized by the coexistence
of clusters of oscillators with coherent (synchronous) and incoherent
(asynchronous) dynamics in the ensemble space. Of particular interest
is the synchronization of chimera states in multicomponent systems and

© BukhA.V, Strelkova G. I, Anishchenko V. 5., 2019



A. V. Bukh, G. . Strelkova, V. 5. Anishchenko. Spiral Wave Patterns in Two-Layer 2D Latticem @

networks. Recently, various synchronization sce-
narios in multiplex and multilayer [23-31] networks
were studied, such as generalized synchronization
[32], inter-layer (external and mutual) synchroniza-
tion [33-38], relay (remote) synchronization [39,
40], explosive synchronization [41-44]. Among a
large variety of chimera states [35, 45—72], here
we concentrate on so-called “spiral wave chimera
structures” which are observed in 2D ensembles of
coupled nonlinear oscillators [10, 22, 73—-86]. These
were typically found in the case of nonlocal coupling
topology of network elements. These structures
represent spiral waves which rotate around incoher-
ent cores. The network elements in the regions of
rotating spiral waves are characterized by coherent
dynamics, while the elements inside the incoherent
cores oscillate asynchronously. We note that spiral
wave chimeras were observed in both numerical
and experimental [78] studies of the dynamics of
2D ensembles whose individual oscillators are de-
scribed, as a rule, by systems of ordinary differential
equations.

In this paper we study the spatio-temporal
dynamics of a 2D lattice of nonlocally coupled dis-
crete-time systems. The network node is described
by a two-dimensional nonlinear map proposed in the
paper [87]. The Nekorkin map models the dynam-
ics of a single neuron and can serve as a universal
discrete model for describing the neuronal activity.
During our numerical studies of the 2D lattice of
coupled Nekorkin maps we observe spiral wave
structures and spiral wave chimeras which are
similar to those realized in ensembles of coupled
phase or FitzZHugh—Nagumo oscillators. It shoud be
noted that simulating a large ensemble of coupled
maps requires much less calculation time as com-
pared with similar computations for ensembles of
coupled differential systems. This circumstance is
undoubtedly an important advantage which enables
one to expand the area of computing and studying of
complex networks of coupled oscillators.

In our work we consider two types of boundary
conditions, periodic (torus) and no-flux (plane), and
show that qualitatively, the results practically do not
depend on their choice. In a spiral wave chimera
regime, we analyze and compare dynamical and
statistical characteristics of the network oscillators.
Furthermore, effects of synchronization of spiral
wave chimera structures have not been studied yet,
and we describe numerical results for mutual and
external synchronization of spiral wave structures
in two coupled 2D lattices consisting of nonlocally
coupled map-based neuron models [87].
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2. Single Nekorkin map

Before focusing on the study of two coupled
2D lattices we describe briefly the dynamics of a
single Nekorkin map which is a simple model for
neuronal dynamics [87]. It is defined by the follow-
ing equations:

xt+l — xt +F(xt)_ yt _ﬁH(xt —d),
yz+1 zyt +£(xt —J),

where x! is a variable that describes the dynamics
of the membrane potential of the nerve cell, y’ is a
variable that relates to the cumulative effect of all
ion currents across the membrane, functions F(x!)
and H(x' — d) are given as follows:

(1)

F(xt)Zx’(xt—a) (1—x’), 0<a<l, (2

H(x’)= {l,x’ >0 }v {0, elsewhere}. (3)

The parameter € determines the characteristic time
scale of )/, the parameter J controls the level of the
membrane depolarization (J < d), the parameters
£ > 0and d > 0 determine the excitation threshold
of bursting oscillations, ¢ = 1,2,... represents dis-
crete time. Despite its simplicity, this map can de-
scribe a number of basic modes of neuronal activity
[88] when the control parameters are varied. These
modes include spike-bursting chaotic oscillations,
subthreshold oscillations, as well as the regime of
single, periodic and chaotic spike generation [87].

In our studies we are especially interested in
the dynamical regime of the map (1), which relates
to spike oscillations. This mode is exemplified in
Fig. 1, where the phase portrait and time series
for the variable x’ are plotted respectively. The
corresponding phase portrait represents a closed
invariant curve. The maximal Lyapunov exponent
in this regime is (up to numerical inaccuracy)
zero, and the second one is negative. Thus, we
can conclude that the map (1) dynamics reflects
a quasi-periodic mode in a lifted continuous-
time system [89]. However, as clearly seen from
Fig. 1 b, the time series of the variable x’ is nearly
periodic, and the rotation number for the invari-
ant curve (Fig. 1 a) is very small, i.e., » = 0.014.
In this case, the trajectory shifts on a very small
angle per iteration that leads to the observation of
nearly periodic oscillations and the invariant curve
is very similar to a limit cycle. This fact is also con-
firmed by numerical results for the autocorrelation
function. The latter decays gradually and very
slowly as a consequence of nearly periodic oscil-
lations (Fig. 1 ¢).
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Fig. 1. (a) Phase portrait, (b) time series x’ and autocorrelation dependence (c) for the map (1) ata=0.25, f=0.04,J=0.15,
d=0.5,&=0.005. The Lyapunov exponents are 4,= 0.0, 4, = —0.4, and the rotation number is r = 0.014

3. 2D lattice of coupled Nekorkin maps

We choose the Nekorkin map (1) as the indi-
vidual element in a two-dimensional N x N lattice
of nonlocally coupled oscillators. The network equa-
tions are as follows:

=+ F ()t - g, - a)

25 (i )]
ij “

+ t t
Yij =Yi; T 8()6[,] —J),

where m_, n, € are indices for nonlocal neighbors.
The sum denotes nonlocal coupling of range R in
a square domain. The network (4) is analyzed for
both periodic

i—R, <m <i+R,, i+N=i,

6))
J—R <n <N, j+R, j£EN=],
and no-flux [90]
max (1, =R, )<m,  <min (N,i+R,), ©

max (1,7 —R_ )< n, <min(N,j+R,).
boundary conditions. The double index of vari-
ables X; and Vi with i, j =1, ..., N encodes the
position of corresponding oscillators on the two-
dimensional lattice. The parameter o, denotes the
coupling strength between the elements in the x
variable B]'; gives the number of nonlocally cou-
pled neighbors of node (i, ). In the case of periodic
boundary conditions, we have B, = (2R, +1) —1.
The numerical results show that when the nonlo-
cal coupling strength o, and the coupling range R,
are varied, the model (4) can demonstrate all the
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typical spiral wave patterns, including spiral wave
chimeras, which were observed earlier.

The dynamics of the network (4) is analyzed
when the individual element (the map (1)) operates
in the spike oscillation mode (Fig. 1). In our simu-
lations we use initial conditions randomly and uni-
formly distributed in the intervals x; ;€ [— 0.2,0.6] ,
yfj € [— 0.02,0.06]. Examples of spatio-temporal
patterns which arise in the network (4) of lo-
cally coupled maps, i.e., when R = 1, are shown in
Fig. 2 for increasing values of the coupling strength
o, and for two types of boundary conditions. The
upper panel shows snapshots of X;; in the case of
no-flux boundary conditions (5) and the lower panel
depicts snapshots of x; ; for periodic boundary condi-
tions (6). The coupling strength o, takes the same
values for both cases. When o is very weak, e.g.,
o, = 0.0001, the individual elements behave as if
they are uncoupled. An incoherent mode with small
coherence clusters is realized at rather small values
of o, (see, for example, Fig. 2 a, d at o, = 0.003).
When the coupling strength increases and becomes
sufficiently strong, e.g., o, = 0.027, smooth coher-
ent patterns are observed in the lattice (Fig. 2 ¢, f).
Spiral wave structures are found in the network
when o takes intermediate values. Examples are
depicted in Fig. 2 b,e for o, = 0.018. As can be seen
from Fig. 2, the obtained patterns do not dramati-
cally differ from each other for different types of
boundary conditions.

We now explain how we obtain spatio-temporal
patterns in the network (4) when the coupling param-

eters are varied. We use random initial conditions as
specified above. Whenever we observe a spiral wave

Hay4Hsiri otaen



A. V. Bukh, G. I. Strelkova, V. S. Anishchenko. Spiral Wave Fatterns in Two-Layer 2D Latticem @

Zij

0.6

0.2

0.2

Tij L j
0.6 0.6
0.2 0.2
-0.2 -0.2

0.2

Fig. 2. Snapshots of the x;/. variable in the network (4) for different values of the coupling strength o.: (a, &) 0.003,
(b, e)0.018, (¢, f) 0.027. The upper and lower panels depict snapshots for no-flux and periodic boundary conditions, respec-
tively. Other parameters: a = 0.25, #=0.04,/=0.15,d=0.5,¢=0.004 and R = 1

pattern for the coupling range R, = 1, we continue
our calculation by changing the coupling parameters
using the pattern of the previous simulation as an
initial condition. Our calculations show that the
observed spatio-temporal patterns strongly depend
on the coupling range. Examples are shown in
Fig. 3 for different values of R, and a fixed value of
o, in the case of no-flux boundaries. Following our
calculation scheme described above, we observe
the spatio-temporal pattern at R = 1 and o= 0.05
(Fig. 3 a) and then increase the coupling range R ..

0.2

Fig. 3. Spiral wave pattern and spiral wave chimeras in the lattice (4) for no-flux boundaries. Snapshots of x
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When R, = 6, the incoherent core appears near the
lattice center and is surrounded by the rotating spi-
ral wave (Fig. 3 b). This means that a spiral wave
chimera state is observed. A further increase in the
coupling range leads to an increase of the size of
the incoherent core (Fig. 3 ¢), which is now strictly
located at the lattice center.

Spiral wave patterns and spiral wave chimeras
can also be found for periodic boundary conditions
when the coupling range R _increases. The number of
incoherent cores also increases as R, goes up (Fig. 4).

T

0.6

0.2 0.2

!
i

ing values of the coupling range: (a) R, = 1, (b) R, = 6, (c) R, = 14. Other parameters: a = 0.25, = 0.04,J=0.15,d = 0.5,
£=0.004 and o, = 0.05

- for increas-
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Fig. 4. Spiral wave pattern and spiral wave chimeras with several incoherent cores in the network (4) for periodic boundary

. P . . . ) _ _ - ]

conditions. Snapshots of x; ; for increasing values of the coupling range: (a) R, = 1, (b) R =5, (¢) R, = 12. Other parameters:
a=0.25,$=0.04,/=0.15,d=0.5,&=0.004 and o, = 0.05

4. Two coupled 2D lattices of Nekorkin maps

We now couple two 2D lattices each described
by the network (4) of 200 x 200 nonlocally cou-
pled Nekorkin maps. The coupling between the
lattices is assumed to be mutual. This means that

ij ij

+1 t t
Yij T Vi +3(xi../ _J)’

=, Fld, ), - B, - )+

ij

t+l .t t
Vij =Vi;te (”i../ -J )’
where variables xl.f ;s y,{ ; define the dynamics of the
; I v, de-
termine the dynamics of the oscillators in the second

lattice, y,,, 7,,» are the interlattice coupling strengths

oscillators in the first lattice, variables u

=y _|_F(x2j)— y,fj _ﬁH(xitJ _d)+

gZ Z[f (xiu,nu

only corresponding oscillators of the lattices are
mutually coupled via their coordinates, i.e., in a
multiplex configuration. In this case the coupled
lattices are described by the following system of
equations:

gﬁ Z[f (xix,nx

ij

j - f(xit,j )} Y [“zt/ - x;i]’

(7

]—f(uij)}+yxu[xlf,~ —ul],

iJ

satisfy the condition r, iz 0.95, where the correlation
coefficient 7, ; between corresponding oscillators of
the lattices is given as follows:

X. .U..
between corresponding oscillators of the first and r; = % )
second lattice layer. In our studies we consider only XijUij (8)
the case of no-flux boundary conditions. Link indices - -

Xy =X, = XU T U =

m_, n e are given in Eq. (6) for the first lattice, and
indices m,, n, € in the second lattice are defined
analogously by replacing R , with R . To account
for potentially different coupling parameters in both
networks, we introduce a subscript x and u for the
first and second network in the coupling strengths
0., 0,,coupling ranges R , R, , numbers of nonlocal
B}, B},
n,. The values of the coupling strengths are fixed as

neighbors and neighbor indices m , m , n_,
o.=0,=0.6.

The synchronization of oscillations between
the lattices is quantified by calculating the number
of synchronized elements N in the lattices, which
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The correlation coefficient r; j is widely used when
synchronization of coupled oscillators is studied
[60, 91]. The corresponding oscillators are assumed
to be synchronized if r; iz 0.95, otherwise they are
desynchronized. The threshold value of rl’f =0.95
is chosen because complete synchronization can-
not be achieved in the case of parameter detuning
in the interacting lattices. The condition r; ;2 0.95,
characterizes the maximum degree of synchroniza-
tion of spatio-temporal structures which is possible
in the regimes studied.
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5. Numerical results for mutual synchronization

The parameters of the individual map (1) are set
as in Section II. The coupling strengths between the
lattices are assumed to be y, =y = 7 in the case of
mutual synchronization. We consider the dynamics
of the coupled lattices (7) when the coupling strength
y is varied. In our simulations spatio-temporal pat-
terns in the network (4) are obtained as follows. We
use random initial conditions distributed in the in-
tervals x!,u!, €[~0.2,0.6], y{,.v!, €[~0.02,0.06]
for the coupling range R = R, = 1. Whenever we
observe a spiral wave pattern in each uncoupled
lattice at R_= R = 1, we use this as initial condi-
tion and continue our calculation by changing the
coupling parameters. First, we choose simple but

2 M mi_] 1
150 150
H0.6
100 100
0.2
50 50
1 = 0.2 1 L
1 50 100 150 i 1 50 100
a b

non-identical spiral wave structures which are real-
ized in the lattices when they are uncoupled. These
patterns are exemplified in Fig. 5 a, b. As can be
seen from Fig. 5 ¢, when the mutual coupling y is
turned on, the resulting structure in the network
(7) differs from the initial patterns in both lattices
(Fig. 5 a, b) and represents a certain intermediate
regime due to the mutual coupling which is inva-

sive. The topology of this spiral wave structure is
preserved, but the wavelength of the spiral wave
in Fig. 5 ¢ does not coincide with that of the initial
structures (Fig. 5 a, b). We measure the wavelength
for each pattern by taking a cross section through
the spiral center and then compare the wave-
lengths.

- Ui j 1 €T
150
0.6 : 0.6
100
0.2 0.2
50
=-0.2 1 =-0.2
150 9 1 50 100 150 7
c

Fig. 5. Snapshots of (a) X (first lattice) for R . =1, y =0 (b) U (second lattice) at R, =3,y =0, (c) X ; (first lattice) for
y = 0.04. Other parameters as in Fig. 1

Our calculations show that different oscillators
in the lattices are synchronized at different values
of the interlattice coupling strength y. As follows
from Fig. 6 a, when the coupling strength is rather

weak, y < 0.02, none of the oscillators (N, = 0) are
in-phase synchronized. This is well illustrated by the
distribution of the correlation coefficient r; ;. shown
in Fig. 6 b. Synchronization is observed only with

N CanEnEnik Tij 1 Tig
N | 0.8 0.8
| 150 - i
0.6 1 0.4 0.4
! [ 100 - ® .
0.4 ! s
: 0 50 Ho
02r ||099 )
0 1 (]‘02. 0.06 L |_IGW 1 g ! 1 LN
( 0.02 0.04 ~ 1 50 100 150 1 50 100 150 j
a b c

Fig. 6. (a) Number of synchronous oscillators ({N

s

> 0.95}) versus the interlattice coupling strength y, distribution of the

correlation coefficient r;at (b)y=0.02, (c) y=0.04 with R, =1, R, =3. Coherent oscillators (i, j) are marked by the light tone
(grey online), incoherent ones by the dark tone (green or red online). The inset in (a) shows a blow-up for N /N 2 close to unity
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y > 0.02 and most oscillators are synchronized at
y=0.03. However, the distribution of the correlation
coefficient r; j depicted in Fig. 6 ¢ clearly indicates
that there is a certain number of desynchronized
oscillators which are located in the center of the lat-
tices. For these oscillators the correlation coefficient
rii< 0.9. Hence, we can state that partial synchroni-
zation takes place in this case. The regime of partial
synchronization is characterized by the coexistence
of synchronous and asynchronous oscillators in the
interacting lattices. As can be seen from Figs. 5 c,
6 ¢, the asynchronous oscillators correspond to the
core of the spiral wave. Almost complete synchro-
nization of all elements is achieved when y > 0.05.

We now consider mutual synchronization of a
coherent spiral wave and a spiral wave chimera with
single core pictured in Fig. 7. Numerical calculations
show that the topology of spiral wave structures es-
sentially depends on the coupling ranges R and R,,.
Particularly, the number of incoherent cores changes

when R and R, are varied. When the lattices are
uncoupled, a spiral wave pattern is realized in the
first lattice (Fig. 7 a) and a spiral wave chimera
is observed in the second one (Fig. 7 b). The syn-
chronous structure which results from the mutual
synchronization of the two coupled lattices (7) is
presented in Fig. 7 c. Our numerical results indicate
that the effect of partial synchronization manifests
itself more brightly in this case. Moreover, as fol-
lows from Fig. 8 a, a larger interlattice coupling
strength y > 0.04 is needed to synchronize most of
the oscillators in the lattices. At the same time, the
number of oscillators which remain desynchronized
increases (Fig. 8 ¢) as compared with Fig. 6 c¢. The
distribution of the correlation coefficient r; j values
for the transient structure at y = 0.02 is shown in
Fig. 8 b. A comparison of the results presented in
Figs. 5, 6 and Figs. 7, 8 shows that the number of
desynchronized oscillators increases when the inco-
herent core appears.

1 .’IT?'J 7 —"I..',.,'J 7 —.’IT?-.J
150 150 150+
0.6 0.6 ' H0.6
100 100 100
0.2 0.2 0.2

-0.2

100 150 j

a

- LN}
50 100 150 ] 1
b

50

-0.2

100 150 7

c

Fig. 7. Snapshots of (a) X (first lattice) for R, =4, y = 0, (b) U (second lattice) at R, = 22, y = 0, (¢) X ; (first lattice)

for y=10.06

N, ' — ] ¢ Tij 1 Tij
N2 o~ | 0.8 0.8
| 150 150 - .
0.6 ’ 0.4 0.4
100 100 - .
0.4 | |
02 | 50 0 50 L go
0 4 . 1 : 1 o4 1 g ! L o0y
( 0.02 0.04 ~ 1 50 100 150 j 1 50 100 150 J
a b c

Fig. 8. (a) Number of synchronous oscillators ({N iy >0.95}) in dependence on the interlattice coupling strength y,
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distribution of the 7, values at (b)y=0.02, (c) y=0.06 with R =4, R, =22
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6. Numerical results for external synchronization

We now analyze the case of external synchro-
nization when the interlattice coupling is introduced
unidirectionally from the elements of the second
lattice, which is the driver network, to the corre-
sponding elements of the first lattice, which is the
response network. Thus, we sety, =7,y =0in (7).
The results of numerical simulations are shown in
Figs. 9-10 for two different spiral wave chimera
structures realized in the driver lattice. When the
lattices are uncoupled, a spiral wave chimera is
established in the second (driver) lattice (Fig. 9 b)
and a coherent spiral wave is realized in the first
(response) lattice (Fig. 9 a). The partial external

150 150
100 100
50 50

50 100 150 J 50 10

a

— 0.2 1

synchronization which takes place in the coupled
lattices starting with y > 0.05 (Fig. 10 a) results in
the synchronous state shown in Fig. 9 c. However,
as can be seen from Fig. 10 ¢, the oscillators in the
incoherent core of the spiral wave chimera (in the
center of the lattice in Fig. 9 ¢) are desynchronized
and this feature is preserved for sufficiently large
values of y > 0.02. Moreover, the incoherent core
corresponds exactly to the incoherent core in the re-
sulting synchronous pattern (Fig. 9 ¢). The number of
desynchronized oscillators grows when the number
of incoherent cores increases. Our numerical studies
have shown that this effect is general for both mutual
and external synchronization.

Wi g 1 SEaN

0.6

0.2 0.2

— 0.2
150 7 1 50 100 150 7

C

Fig. 9. Snapshots of (a) X in the first (response) lattice at R_ =4, y = 0, (b) U in second (driver) lattice at R, = 22,y =0,
() X in the response lattice for y = 0.05
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Fig. 10. (a) Number of synchronous oscillators ({N

s
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> 0.95}) versus the unidirectional interlattice coupling strength y,

distribution of the Ty values at (b) y = 0.02, (c) y = 0.05 with R =4, R =22

7. Conclusions

We have studied the dynamics of a two-
dimensional network of discrete-time maps with
nonlocal interaction. The local dynamics of the
network element is defined by the Nekorkin map
which is a universal discrete model of the neuronal

Paanorsrika, 31eKTPOHNKA, akyCTHKa

activity. This map can describe a variety of different
dynamical modes, including chaotic spike-bursting
oscillations, subthreshold and spike oscillations.
We have shown for the first time that the 2D
lattice of coupled map-based neuron models can
demonstrate all typical spatio-temporal structures,
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including spiral wave patterns and spiral wave
chimeras, which are similar to those observed in
2D networks of nonlocally coupled phase oscilla-
tors, FitzHugh—Nagumo models, reaction-diffusion
models, chemical oscillators, etc. The network dy-
namics has been explored for two types of boundary
conditions, periodic (toroidal) and no-flux (plane)
and it has been shown that the resulting patterns
have not changed qualitatively depending on the
choice of boundary conditions. Our studies have
demonstrated that the spiral wave chimeras can be
observed within finite ranges of variation of the
nonlocal coupling paratemers and the multi-core
chimeras can be obtained when the coupling range
R increases.

Our numerical studies have convicingly shown
that a simple discrete-time system in the form of
the Nekorkin map, that describes well a rich va-
riety of the neuronal activity, can be chosen and
used as individual element of a complex network
for further extended analysis of the properties and
characteristics of spiral wave patterns and spiral
wave chimeras. We have analyzed numerically the
mutual and external synchronization of two coupled
lattices consisting of nonlocally coupled Nekorkin
maps. Our numerical studies have shown that these
synchronization effects are characterized by several
important features. First, if each of the uncoupled
lattices exhibits simple spiral wave structures, im-
perfect (almost complete) synchronization of oscil-
lations of most corresponding elements of the two
lattices can occur for a sufficient value of the cou-
pling strength y. We note that in the case of mutual
synchronization, the resulting synchronous structure
differs from the initially established modes in the
uncoupled lattices. This effect is typical and has also
been encountered when mutual synchronization of
two oscillators with limit cycles [92] was considered.
Complete synchronization cannot be achieved even
with a significant increase in the coupling strength,
if one of the lattices exhibits a spiral wave chimera
pattern for zero interlattice coupling. The second
peculiarity consists of the fact that not all oscilla-
tors are almost completely synchronized when the
lattices are coupled mutually or unidirectionally. A
certain number of oscillators remain desynchronized
while most of them demonstrate imperfect (almost
complete) synchronization. This effect takes place
even in the case of simple (single-core) initial pat-
terns in both lattices and is enhanced when the
initial spiral wave chimera in one of the interacting
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lattices has multiple cores. It has been shown that the
transition from a spiral wave chimera structure with
a single core to a spiral wave chimera with several
cores is characterized by an increase in the number
of unsychronized oscillators.
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OnucbiBaeTCs MPOCTPAHCTBEHHO-BPEMEHHAs [MHAMUKA PELLIETKH,
NpeacTaBNAIoLLIei  Co00i ABYMEPHYIO CETb HENOKANbHO CBA3AHHLIX
otoGpaxeHnii HekopkuHa, MOLENMPYIOLLNX HEPOHHYIO aKTUBHOCTb.

MoBeneHMe CETH U3y4aeTes B CyYasx rPaHuyHbIX YCoBuii 6e3 no-
TOKa M NEpPUOANYECKNX FPaHUYHbIX YCNOoBMiA. MokasaHo, 4To B pac-
CMaTpy1BaEMOii PeLLeTKe A ONpeaeNeHHbIX 3HaYEHMIA NapamMeTpoB
CBS3M MOryT HabnioaatbCs BPALLAIOWMNECS CTIMPANbHBIE BOMHbI 1
CMMPasbHO-BONIHOBbIE XWMEPHBIE COCTOSHUSA. AHANM3MpPYIOTCS 1
CPaBHMBAIOTCS CTATUCTUYECKME W [OMHAMMYECKME XapaKTepucTu-
KU NOKaJbHbIX OCLMINATOPOB M3 KOFEPEHTHbIX U HEKOTEPEHTHBbIX
KNacTepoB CMMpasnbHO-BOIHOBOTO XMMEPHOrO COCTOsHUS. Bonee
TOro, M3yyatoTcs IdPeKTbl B3AMMHON U BHELIHEA CUHXPOHW3ALMM
CMMPanbHO-BOSIHOBLIX CTPYKTYP B [IBYX CBSA3AHHbIX TakuxX peLueT-
Kax. YMCNEHHO MoKa3aHo, YTO CMMPanbHO-BOMHOBLIE CTPYKTYPHI,
BKJIIOYAs1 CMUPANbHO-BOJIHOBbIE XMMEPHbIE COCTOSIHUS, MOTYT ObiTb
CWUHXPOHM30BaHbI, M MOKA3aH MEXaHU3M WX CUHXPOHU3aumu. Pe-
3yNbTaThl YUCNEHHBIX UCCNELOBAHUIA CBULETENLCTBYIOT O TOM, YTO
Mpu JOCTATOYHO ManoM 3HAYEHUM NapameTpa CWibl CBS3U MEXZY
peLueTKamu TONbKO HEKOTOpas YacTb OCLMANSTOPOB CUHXPOHU3YET-
C4, TOrAa Kak Aapyras 4acTb IEMOHCTPUPYET YaCTUYHO CUHXPOHHOE
noBefeHne. CUHXPOHW3aLUMsS OCYLLECTBASETCS ANs GOMbLUMHCTBA
OCLUMNASTOPOB B CNyyae, Koraa MpOCTPAHCTBEHHO-BPEMEHHbIE
CTPYKTYPbl B PELIETKAX HE BK/IOYAIOT HEKOTEPEHTHBIX SiAep W 3Ha-
YeHre mapameTpa Cusbl CBSI3W MPEBbLILLAET HEKOTOPOE NOPOrOBOE
3HayeHue. B pexnmax cnmpanbHOB-BOSTHOBLIX XMMEPHbIX COCTOSIHUI
PEXUM CUHXPOHW3ALMM HE JOCTUraeTca s BCEX OCLMNSTOPOB,
JaXe eCNu 3Ha4YeHe NapameTpa Cutbl CBS31U AOCTATOYHO BEMKO.
KnioyeBbie cnoBa: CrnupanbHble BOMHBI, CIMPANbHO-BONHOBOE
XMMEPHOE COCTOSIHWE, CETU, HENOKanbHas CBA3b, AUCKPETHOE 0TO-
OpaxeHne, CUHXPOHM3ALMS.
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