Целью данной работы является исследование условий существования стационарных моментов случайного процесса, динамика которого описывается линейным стохастическим дифференциальным уравнением первого порядка с флуктуациями одного из коэффициентов в виде немарковского дихотомического шума, имеющего произвольное время корреляции. Показано, что реализация стационарности моментов зависит от того, будут или нет параметры динамической системы и дихотомического шума связаны пропорцией золотого сечения.