Образец для цитирования:
Давидович М. В., Глухова О. Е., Слепченков М. М. Терагерцевый транзистор на основе графена // Известия Саратовского университета. Новая серия. Серия Физика. 2017. Т. 17, вып. 1. С. 44-54. DOI: https://doi.org/10.18500/1817-3020-2017-17-1-44-54
Терагерцевый транзистор на основе графена
Из-за отсутствия значительной энергетической щели в нанолентах графена имеются трудности по созданию быстро переключающихся транзисторов для цифровых схем на них. Для усиления аналоговых сигналов в ряде работ предложены графеновые туннельные транзисторы, полевые транзисторы, транзисторы с отрицательным сопротив- лением и генераторы с накачкой. В работе рассмотрен транзистор в виде трех электродов, соединенных нанолентами графена или металлическими квантовыми проволоками (нитями), работающий по принципу управления током путем изменением напряжения на центральном электроде (затворе). Рассмотрение проведено в рамках модели Ланда- уэра–Датты–Лундстрома в приближении равновесности на электродах. Получены ли- нейные модели, рассмотрены нелинейные слагаемые в определении тока, рассчитаны нелинейные вольт-амперные характеристики. Рассчитаны параметры транзисторного усилителя, выполненного на полосковой и щелевой линиях с учетом баллистического транспорта, баллистической индуктивности и емкостей электродов. Получен коэффициент усиления по напряжению, для увеличения которого предложено использовать более широкую и короткую наноленту между истоком и затвором.
1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films // Science. 2004. Vol. 306. P. 666–669. DOI: https://doi.org/10.1126/science.1102896
2. Neto C. A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of graphene // Rev. Mod. Phys. 2009. Vol. 81. P. 109‒62. DOI: https://doi.org/10.1103/RevModPhys.81.109
3. Geim A. K., Novoselov K. S. The Rise of Graphene // Nature Materials. 2007. Vol. 6. P. 183‒191. DOI: https://doi.org/10.1103/RevModPhys.81.109
4. Lemme M.C., Echtermeyer T. J., Baus M., Kurz H. A graphene fi eld-effect device // IEEE ED Lett. 2007. Vol. 28, № 4. P. 282‒284. DOI: https://doi.org/10.1109/LED.2007.891668
5. Schwierz F. Graphene Transistors // Nature Nanotechnology. 2010. Vol. 5. P. 487–496. DOI: https://doi.org/10.1038/nnano.2010.89
6. Chen Z., Lin Yu-M., Rooks M. J., Avouris P. Graphene nano-ribbon electronics // Physica E: Low-dimensional Systems and Nanostructures. 2007. Vol. 40, № 2. P. 228‒232. DOI: https://doi.org/10.1016/j.physe.2007.06.020
7. Han M. Y., Özyilmaz B., Zhang Y., Kim P. Energy Bandgap Engineering of Graphene Nanoribbons // Phys. Rev. Lett. 2007. Vol. 98, № 20. P. 206805 (1‒4). DOI: https://doi.org/10.1103/PhysRevLett.98.206805
8. Свинцов Д. А., Вьюрков В. В., Лукичёв В. Ф., Орликов- ский А. А., Буренков А., Охснер Р. Туннельные полевые транзисторы на основе графена // Физика и техника полупроводников. 2013. Т. 47, вып. 2. С. 244‒250.
9. Liu G., Ahsan S., Khitun A.G., Lake R. K., Balandin A. A. Graphene-Based Non-Boolean Logic Circuits // J. Appl. Phys. 2013. Vol. 114. P. 154310 (1‒10). DOI: https://doi.org/10.1063/1.4824828
10. Rana F. Graphene Terahertz Plasmon Oscillators // IEEE Trans. on Nanotechnology. 2008. Vol. 7, № 1. P. 91‒99. DOI: https://doi.org/10.1109/TNANO.2007.910334
11. Ragheb T., Massoud Y. On the Modeling of Resistance in Graphene Nanoribbon (GNR) for Future Interconnect Applications // Proc. IEEE/ACM Intern. Conf. on Computer-Aided Design (ICCAD 2008). 2008. P. 593‒597. DOI: https://doi.org/10.1109/ICCAD.2008.4681637
12. Lundstrom M., Jeong C. Near-Equilibrium Transport : Fundamentals and Applications. Hackensack, New Jersey : World Scientifi c Publishing Company, 2013. 227 p.
13. Кругляк Ю. А. Обобщённая модель электронного транспорта Ландауэра–Датты–Лундстрома // Nanosystems, Nanomaterials, Nanotechnologies. 2013. Т. 11, № 3. С. 519–549.
14. Kruglyak Yu. Landauer–Datta–Lundstrom Generalized Transport Model for Nanoelectronics // Journal of Nanoscience. 2014. Vol. 2014, Article ID 725420. P. 1‒15. DOI: https://doi.org/10.1155/2014/725420
15. Кругляк Ю. А. Наноэлектроника «снизу – вверх» : возникновение тока, обобщенный закон Ома, упругий резистор, моды проводимости, термоэлектричество // Scientifi c Journal «ScienceRise». 2015. Т. 7, № 2(12). С. 76‒100. DOI: https://doi.org/10.15587/2313-8416.2015.45700
16. Кругляк Ю. А. Графен в транспортной модели Ландауэра‒Датты‒Лундстрома // Scientifi c Journal «ScienceRise». 2015. Т. 2, № 2 (7). C. 93‒106. DOI: https://doi.org/10.15587/2313-8416.2015.36443
17. Slepyan G. Ya., Maksimenko S. A., Lakhtakia L., Yevtushenko O., Gusakov A. V. Electrodynamics of carbon nanotubes : Dynamic conductivity, impedance boundary conditions, and surface wave propagation // Phys. Rev. B. 1999. Vol. 60. P. 17136 (1‒14).
18. Hanson G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene // J. Appl. Phys. 2008. Vol. 103. P. 064302 (1–8). DOI: https://doi.org/10.1063/1.2891452
19. Gusynin V. P., Sharapov S. G., Carbotte J. P. Magneto-optical conductivity in graphene // J. Phys. : Condens. Matt. 2007. Vol. 19. P. 026222 (1‒28). DOI: https://doi.org/10.1088/0953-8984/19/2/026222
20. Falkovsky L. A., Pershoguba S. S. Optical far-infrared properties of graphene monolayer and multilayers // Phys. Rev. 2007. Vol. B 76. P. 153410 (1‒4). DOI: https://doi.org/10.1103/PhysRevB.76.153410
21. Falkovsky L. A., Varlamov A. A. Space-time dispersion of graphene conductivity // Eur. Phys. J. 2007. Vol. B 56. P. 281‒284. DOI: https://doi.org/10.1140/epjb/e2007-00142-3
22. Lovat G., Hanson G.W., Araneo R., Burghignoli P. Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene // Phys. Rev. 2013. Vol. B 87. P. 115429 (1‒11). DOI: https://doi.org/10.1103/PhysRevB.87.115429