Cite this article as:
Davidovich M. V., Glukhova O. Е., Slepchenkov M. М. The Graphene Based Terahertz Transistor. Izvestiya of Saratov University. New series. Series Physics, 2017, vol. 17, iss. 1, pp. 44-54. DOI: https://doi.org/10.18500/1817-3020-2017-17-1-44-54
The Graphene Based Terahertz Transistor
Background and Objectives: Due to the lack of a substantial energy gap in graphene nanoribbons there are difficulties to create a fast-switching transistors for digital circuits using them. In a number of recent works, the usage of graphene nanoribbons in tunneling transistors, field effect transistors, transistors with negative resistance and in generators with pumping has been proposed for amplification of analog signals. Model and Methods: We consider the transistor with three electrodes, which connected by graphene nanoribbons or metal quantum wires working on the principle of current control by changing the voltage on the central electrode (the gate). The consideration is conducted within the framework of the Landauer–Datta–Lundstrom model in the approximation of equilibrium at the electrodes. This device works on the principle of controlling the current by changing the voltage on the gate, on which the Coulomb blockade can occur. The linear models have been considered and obtained as well as the nonlinear terms in the total current. We also consider and calculate the nonlinear currentvoltage characteristics of graphene nanoribbons. Results: The parameters of transistor amplifier which made as microstrip and slot-line realizations are considered taking into account the ballistic transport, ballistic inductance and capacitance of the electrodes. The gain of the voltage has been obtained. To increase them we propose to use between the source and the gate the nanoribbon, which wider and shorter as compared with nanoribbon between the gate and the drain.
1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, vol. 306, pp. 666‒669. DOI: https://doi.org/10.1126/science.1102896
2. Neto C. A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of graphene. Rev. Mod. Phys., 2009, vol. 81, pp. 109‒62. DOI: https://doi.org/10.1103/RevModPhys.81.109
3. Geim A. K., Novoselov K. S. The Rise of Graphene. Nature Materials, 2007, vol. 6, pp. 183‒191. DOI: https://doi.org/10.1103/RevModPhys.81.109
4. Lemme M. C., Echtermeyer T. J., Baus M., Kurz H. A graphene field-effect device. IEEE ED Lett.. 2007, vol. 28, no. 4, pp. 282‒284. DOI: https://doi.org/10.1109/LED.2007.891668
5. Schwierz F. Graphene Transistors. Nature Nanotechnology, 2010, vol. 5, pp. 487–496. DOI: https://doi.org/10.1038/nnano.2010.89
6. Chen Z., Lin Yu-M., Rooks M. J., Avouris P. Graphene nano-ribbon electronics. Physica E: Low-dimensional Systems and Nanostructures, 2007, vol. 40, no. 2, pp. 228‒232. DOI: https://doi.org/10.1016/j.physe.2007.06.020
7. Han M. Y., Özyilmaz B., Zhang Y., Kim P. Energy Bandgap Engineering of Graphene Nanoribbons. Phys. Rev. Lett., 2007, vol. 98, no. 20, pp. 206805 (1‒4). DOI: https://doi.org/10.1103/PhysRevLett.98.206805
8. Svintsov D. A., Finches V. V., Lukichev V. F., Orlikovsky A. A., Burenkov A., Ochsner R. Tunnel’nye polevye tranzistory na osnove grafena [Tunneling fi eld-effect transistors based on graphene]. Physics and Technics of Semiconductors, 2013, vol. 47, iss. 2, pp. 244‒250 (in Russian).
9. Liu G., Ahsan S., Khitun A.G., Lake R.K., Balandin A.A. Graphene-Based Non-Boolean Logic Circuits. J. Appl. Phys., 2013, vol. 114, pp. 154310 (1‒10). DOI: https://doi.org/10.1063/1.4824828
10. Rana F. Graphene Terahertz Plasmon Oscillators. IEEE Trans. on Nanotechnology, 2008, vol. 7, no. 1, pp. 91‒99. DOI: https://doi.org/10.1109/TNANO.2007.910334
11. Ragheb T., Massoud Y. On the Modeling of Resistance in Graphene Nanoribbon (GNR) for Future Interconnect Applications. Proc. IEEE/ACM Int. Conf. on ComputerAided Design (ICCAD 2008), 2008, pp. 593‒597. DOI: https://doi.org/10.1109/ICCAD.2008.4681637
12. Lundstrom M., Jeong C. Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey, World Scientifi c Publishing Company, 2013. 227 p.
13. Kruglyak Yu. A. Obobshennaya model’ electronnogo transporta Landauera–Datty–Lundstroma [Generalized Landauer–Datta–Lundstrom model of electron transport]. Nanosystems, Nanomaterials, Nanotechnologies, 2013, vol. 11, № 3, pp. 519–549 (in Russian).
14. Kruglyak Yu. Landauer‒Datta‒Lundstrom Generalized Transport Model for Nanoelectronics. Journal of Nanoscience, 2014, vol. 2014, Article ID 725420, pp. 1‒15. DOI: https://doi.org/10.1155/2014/725420
15. Kruglyak Yu. A.. Nanoelectronika «snizu – vverkh»: vozniknovenie toka, obobshennyi zakon Oma, uprugii resistor, mody provodimosti, termoelectrichestvo [Nanoelectronics «from bottom to up»: the emergence of the current, the generalized Ohm’s law, elastic resistor, conductivity modes, thermoelectricity]. Scientifi c Journal «ScienceRise», 2015, vol. 7, no. 2 (12), pp. 76‒100. DOI: https://doi.org/10.15587/2313-8416.2015.45700
16. Kruglyak Yu. A. Grafen v transportnoi modeli Landauera-Datty-Lundstroma [Graphene in the LandauerDatta-Lundstrom transport model]. Scientifi c Journal «ScienceRise», 2015, vol. 2, no. 2 (7), pp. 93‒106. DOI: https://doi.org/10.15587/2313-8416.2015.36443
17. Slepyan G. Ya., Maksimenko S. A., Lakhtakia L., Yevtushenko O., Gusakov A. V. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B, 1999, vol. 60, pp. 17136 (1‒14).
18. Hanson G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 2008, vol. 103, pp. 064302 (1–8). DOI: https://doi.org/10.1063/1.2891452
19. Gusynin V. P., Sharapov S. G., Carbotte J. P. Magnetooptical conductivity in graphene. J. Phys.: Condens. Matt., 2007, vol. 19, pp. 026222 (1‒28). DOI: https://doi.org/10.1088/0953-8984/19/2/026222
20. Falkovsky L.A., Pershoguba S.S. Optical far-infrared properties of graphene monolayer and multilayers. Phys. Rev., 2007, vol. B 76, pp. 153410 (1-4). DOI: https://doi.org/10.1103/PhysRevB.76.153410
21. Falkovsky L.A., Varlamov A.A. Space-time dispersion of graphene conductivity. Eur. Phys. J., 2007, vol. B 56, pp. 281‒284. DOI: https://doi.org/10.1140/epjb/e2007-00142-3
22. Lovat G., Hanson G.W., Araneo R., Burghignoli P. Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene. Phys. Rev., 2013, vol. B 87, pp. 115429 (1‒11). DOI: https://doi.org/10.1103/PhysRevB.87.115429