Cite this article as:
Dudko G. М., Kozhevnikov А. V., Saharov V. К., Stalmahov А. V., Filimonov Y. А., Khivintsev Y. V. Calculation of Focusing Spin Wave Transducers Using the Method of Micromagnetic Simulation. Izvestiya of Saratov University. New series. Series Physics, 2018, vol. 18, iss. 2, pp. 92-102. DOI: https://doi.org/10.18500/1817-3020-2018-18-2-92-102
Calculation of Focusing Spin Wave Transducers Using the Method of Micromagnetic Simulation
Background and Objectives: Researches in the field of electronic circuit development for microwave informational systems based on magnetization oscillations and waves have been performing since the 1960s of the last century. The surge of interest in spin waves (SW) during the last decade is caused by the perspective to use SW as information carriers on the sub-micromagnetic and nanometer scale that leads to the fabrication of devices on magnonic principles and a significant miniaturization of spin-wave devices. Besides, the effect of spin wave generation by the spin-polarized current in ferromagnetic nanostructures gives opportunities for possible integration of magnonic and spintronic devices. It should be supplemented that apart from the traditional application of spin waves for microwave signal processing, the possibility to fabricate the logic and holographic memory based on effects of propagation and interference of spin waves has been widely discussed recently. The aim of this work is to to develop a new approach for calculating microwave transducers focusing spin waves in thin-film waveguides with a significantly non-uniform distribution of parameters based on the method of micromagnetic modeling.
Materials and Methods: Mic romagnetic simulations were performed by using the free software “Object Oriented Micromagnetic Framework” (OOMMF) provided by the National Institute of Standards and Technology.
Results: We have shown the possibility to calculate the form of transducers focusing spin waves both in the films with a uniform distribution of magnetic parameters and in the films having the significantly non-uniform equilibrium state. In the last case, the numerical approach remains the only possible.
Conclusion: In our work, we have proposed a new method to obtain the form of transducers focusing spin waves in magnetic microstructures. It is based on the approach of micromagnetic simulation of spin wave propagation after their excitation by the point emitter.
1. Nikitov S. A., Kaliabin D. V., Lisenkov I. V., Slavin A. N., Barabanenkov Yu. N., Osokin S. A., Sadov nikov A. V., Baginin E. N., Morozova M. A., Sharaev skii Yu. P., Filimonov Yu. A., Khivintsev Yu. V., Vysotskii S. L., Sakharov V. K., Pavlov E. S. Magnonics: a new research area in spintronics and spin wave electronics. Phys. Usp., 2015, vol. 58, no. 10, pp. 1002–1028. DOI: https://doi.org/10.3367/UFNr.0185.201510m.1099
2. Khitun A. G., Kozhanov A. E. Magnonic Logic Devices. Izv. Saratov. Univ. (N.S.), Ser. Physics, 2017, vol. 17, iss. 4, pp. 216–241 (in Russian). DOI: https://doi.org/10.18500/1817-3020-2017-17-4-216-241
3. Kozhevnikov A., Gertz F., Dudko G., Filimonov Yu., Khitun A. Pattern recognition with magnonic holographic memory device. Appl. Phys. Lett., 2015, vol. 106, no.14, 142409.
4. Sadovnikov A. V., Odintsov S. A., Beginin E. N., Sheshukova S. E., Sharaevskii Yu. P., Nikitov S. A. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes. Phys. Rev., 2017, vol. B 96, 144428.
5. Sadovnikov A. V., Davies C. S., Kruglyak V. V., Romanenko D. V., Grishin S. V., Beginin E. N., Sharaevskii Yu. P., Nikitov S. A. Spin wave propagation in a uniformly biased curved magnonic waveguide. Phys. Rev., 2017, vol. B 96, 060401.
6. Stognij A. I., Lutsev L. V., Bursian V. E., Novitskii N. N. Growth and spin-wave properties of thin Y3Fe5O12 films on Si substrates. J. Appl. Phys., 2015, vol. 118, july, 023905.
7. Sun Y., Song Y., Wu M. Growth and ferromagnetic resonance of yttrium iron garnet thin films on metals. Appl. Phys. Lett., 2012, vol. 101, no. 8, 082405.
8. Khivintsev Yu. V., Filimonov Yu. A., Nikitov S. A. Spin wave excitation in yttrium iron garnet films with micron-sized antennas. Appl. Phys. Lett., 2015, vol. 106, no. 5, 052407.
9. Yu H., d’Allivy Kelly O., Cros V., Bernard R., Bortolotti P., Anane A., Brandl F., Huber R., Stasinopoulos I., Grundler D. Sub-100 nm-wavelength spin wave propagation in metal/insulator magnetic nanostructures. Scientific Reports, 2014, vol. 4, 6848. DOI: https://doi.org/10.1038/ncomms11255
10. Jorzick J., Demokritov S. O., Hillebrands B., Baileul M., Fermon C., Guslienko K., Slavin A. N. Spin wave wells in nonellipsoidal micrometer size magnetic elements. Phys. Rev. Lett., 2002, vol. 88, no. 4, 047204.
11. Hicken R. J., Barman A., Kruglyak V. V., Ladak S. Optical ferromagnetic resonance studies of thin film magnetic structures. J. Phys. D: Appl. Phys., 2003, vol. 36, no. 18, 2183.
12. Donahue M., Porter D. Object Oriented Micro Magnetic Framework (OOMMF). Interagency Report NISTIR 6376. National Institute of Standards and Technology, Gaithersburg, Maryland, Sept, 1999. 897 p.
13. Berkov D. V., Gorn N. L. Micromagus – soft-ware for micromagnetic simulations, 2008. Available at: http://www.micromagus.de/ (accessed 4 April 2018).
14. Davies C. S., Sadovnikov A. V., Grishin S. V., Sharaevskii Yu. P., Nikitov S. A., Kruglyak V. V. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots. Appl. Phys. Lett., 2015, vol. 107, no.16, 162401.
15. Gieniusz R., Gruszecki P., Krawczyk M., Guzowska U., Stognij A., Maziewski A. The switching of strong spin wave beams in patterned garnet films. Scientific Reports, 2017, vol. 7, no. 8, 8771. DOI: https://doi.org/10.1038/s41598-017-06531-2
16. Vashkovskii А. V., Grechushkin K. V., Stalmakhov A. V., Tulukin V. А. Fokusiruyuschiy preobrazovatel poverkhnostnyh magnitostaticheskih voln [Focusing transducer of surface magnetostatic waves]. Radiotehnika i electronika, 1986, vol. 31, no. 4, pp. 838–840 (in Russian).
17. Vashkovskii А. V., Grechushkin K. V., Stalmakhov A. V., Tulukin V. А. Fokusirovka objemnyh magnitostaticheskih voln [Focusing of volume magnetostatic waves]. Radiotehnika i electronika, 1987, vol. 32, no. 6, pp. 1176–1183 (in Russian).
18. Vashkovskii А. V., Stalmakhov A. V., Shakhnazarian D. G. Formirovanie, otrazhenie i prelomlenie puchkov magnitostaticheskih voln [Forming, reflection and refraction of magnetostatic waves beams]. Izvestiya VUZ. Fizika, 1988, no. 11, pp. 57–75 (in Russian).
19. Stalmakhov A. V. Rasprostranenie volnovyh puchkov magnitostaticheskih voln v tonkoplenochnyh strukturah [Propagation of magnetostatic waves beams in thin-film structures]. Thesis Diss. Dr. Sci. (Phys.), Moscow, 1992. 35 p. (in Russian).
20. Gurevich A. G., Melkov G. A. Magnitnye kolebaniya i volny [Magnetic oscillations and waves]. Moscow, Fizmatlit Publ., 1994. 464 p. (in Russian).
21. Sakharov V. K., Khivintsev Yu. V., Vysotskii S. L., Stognij A. I., Filimonov Yu. A. Enhanced Nonreciprocity of Magnetostatic Surface Waves in YttriumIron-Garnet Films Deposited on Silicon Substrates by Ion-Beam Evaporation. IEEE Magnetics Lett., 2017, vol. 8, 3704804. DOI: https://doi.org/10.1109/LMAG.2017.2659638
22. Dvornik M. Numerical Investigations of Spin Waves at the Nanoscale. PhD thesis. University of Exeter, U.K., 2011. 23 p.