Cite this article as:

Stetsyura S. V., Gorin D. A. Different Types of Surface Enhancement Raman Scattering Platforms and their Applications. Izvestiya of Saratov University. New series. Series Physics, 2013, vol. 13, iss. 2, pp. 84-87. DOI: https://doi.org/10.18500/1817-3020-2013-13-2-84-87


UDC: 
544.7
Language: 
Russian

Different Types of Surface Enhancement Raman Scattering Platforms and their Applications

Abstract

In this work high sensitive analytical technique surface enhancement Raman scattering (SERS) is considered. The detection of one molecule of substance in solution is possible by this technique. And SERS is noninvasive analytical equipment and for research of bioobjects can be combined with other techniques such as microfluidics or laser tweezers.

References

1. Пентин Ю. А., Курамшина Г. М. Основы молекулярной спектроскопии. М. : Мир; Бином. Лаборатория знаний, 2008. 398 с.

2. Mayerhцfer T., Krafft C., Popp J. Modern Raman spectroscopy for biomedical applications // Optik & Photonik. 2011. Vol. 4. P. 24–28.

3. Dochow S., Krafft C., Neugebauer U., Bocklitz T., Henkel T., Albert J., Popp J. Tumour cell identifi cation by means of Raman spectroscopy in combination with optical traps and microfl uidic environments // Lab Chip. 2011. Vol. 11, № 8. Р. 1484–1490.

4. Гешев П. Гигантское комбинационное рассеяние света // Наука в Сибири. 2007. № 8. С. 11–12.

5. Набиев И. Р., Ефремов Р. Г., Чуманов Г. Д. Гигантское комбинационное рассеяние и его применение к изучению биологических молекул // УФН. 1988. № 3. С. 459–492.

6. Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective // J. of Raman Spectroscopy. 2005. Vol. 36. P. 485–496.

7. Brus L. Noble Metal Nanocrystals : Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy // Accounts of the Chemical Research. 2008. Vol. 41. P. 1742–1749.

8. Abalde-Cela S., Aldeanueva-Potel P., Mateo-Mateo C., Rodríguez-Lorenzo L., Alvarez-Puebla R. A., Liz-Marzán L. M. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles // J. Royal Society Interface. 2010. Vol. 7. P. 435–450.

9. Seney C. S, Gutzman B. M., Goddard R. H. Correlation of Size and Surface-Enhanced Raman Scattering Activity of Optical and Spectroscopic Properties for Silver Nanoparticles // J. Phys. Chem. C. 2009. Vol. 113. P. 74–80.

10. Pazos-Perez N., Ni W., Schweikart A., AlvarezPuebla R. A., Fery A., Liz-Marzan L. M. Highly uniform SERS substrates formed by wrinkle-confi ned drying ofgold colloids // Chemical Science. 2010. Vol. 1. P. 174–178.

11. Kneipp J., Kneipp H., Kneipp K. SERS-a singlemolecule and nanoscale tool for bioanalytics // Chem. Soc. Rev. 2008. Vol. 37. P. 1052–1060.

12. Pieczonka N. P., Aroca R. F. Single molecule analysis by surfaced-enhanced Raman scattering // Chem. Soc. Rev. 2008. Vol. 37. P. 946–954.

13. Nelayah J., Kociak M., Stéphan O., García de Abajo F. J., Tencé M., Henrard L., Taverna D., Pastoriza-Santos I., Liz-Marzán L. M., Colliex C. Mapping surface plasmons on a single metallic nanoparticle // Nature Physics. 2007. Vol. 5. P. 348–353.

14. Bryant G. W., Garcı´a De Abajo F.J., Aizpurua J. Mapping the Plasmon Resonances of Metallic Nanoantennas // Nano Letters. 2008. Vol. 8. P. 631–636.

15. Chen X., Li S., Can X., Banholzer M. J ., Schatz G. C., Mirkin C. A. Plasmonic Focusing in Rod-Sheath Heteronanostructures // ACS Nano. 2009. Vol. 3. P. 87–92.

16. Cobley C. M., Skrabalak S. E., Campbell D. J., Xia Y. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications // Plasmonics. 2009. Vol. 4. P. 171–179.

17. Rodriguez-Lorenzo L., Alvarez-Puebla R. A., PastorizaSantos I., Mazzucco S., Stephan O., Kociak M., LizMarzan L. M., de Abajo F. J. G. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering // J. Amer. Chem. Soc. 2009. Vol. 131. P. 4616–4618.

18. Ko H., Singamaneni S., Tsukruk V. V. Nanostructured Surfaces and Assemblies as SERS Media // Small. 2008. Vol. 4. P. 1576–1599.

19. Tripp R. A., Dluhy R. A., Zhao Y. Novel nanostructures for SERS biosensing // Nano Today. 2008. Vol. 3. P. 31–37.

20. Green M., Liu F. M., Cohen L., Köllensperger P., Cass T. SERS platforms for high density DNA arrays // Faraday Discuss. 2006. Vol. 132. P. 269–280.

21. Piao L., Park S., Lee H. B., Kim K., Kim J., Chung T. D. Single Gold Microshell Tailored to Sensitive Surface Enhanced Raman Scattering Probe // Anal. Chem. 2010. Vol. 82. P. 447–451.

22. Iler R. K. Multilayers of colloidal particles // J. Colloid Interface Sci. 1966. Vol. 21. P. 569–594.

23. Singhal R., Chaubey A., Kaneto K., Takashima W., Malhotra B. D. Poly-3-Hexyl Thiopene Langmuir–Blodgett Films for Application to Glucose Biosensor // Biotech nology and Bioengineering. 2004. Vol. 85, № 3. P. 277–282.

24. Collier C. P., Saykally R. J., Shiang J. J., Henrichs S. E., Heath J. R. Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition // Science. 1998. Vol. 277. P. 1978–1980.

25. Paul S., Pearson C., Molloy A., Cousins M.A., Green M., Kolliopoulou S., Dimitrakis P., Normand P., Tsoukalas D., Petty M. C. Langmuir–Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures // Nano Lett. 2003. Vol. 3. P. 533–536.

26. Genson K. L., Holzmuller J., Villacencio O. F., McGrath D. V., Vaknin D., Tsukruk V. V. Monolayers of Photochromic Amphiphilic Monodendrons : Molecular Aspects of Light Switching at Liquid and Solid Surfaces // J. Phys. Chem. B. 2005. Vol. 109. P. 20393– 20402.

27. Tao A., Kim F., Hess C., Goldberger J., He R., Sun Y., Xia Y., Yang P. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy // Nano Lett. 2003. Vol. 3. P. 1229–1233.

28. Lu Y., Liu G. L., Lee L. P. High-density silver nanoparticle fi lm with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate // Nano Lett. 2005. Vol. 5. P. 5–9.

29. Tao A., Sinsermsuksakul P., Yang P.Tunable plasmonic lattices of silver nanocrystals // Nat. Nanotechnol. 2007. Vol. 2. P. 435–440.

30. Pazos-Perez N., Borke T., Andreeva D. V., AlvarezPuebla R. A. Silver coated aluminium microrods as highly colloidal stable SERS platforms // Nanoscale. 2011. Vol. 3. P. 3265.

31. Stetciura I. Y., Markin A. V., Ponomarev A. N., Yakimansky A. V., Demina T. S., Grandfi ls C., Volodkin D. V., Gorin D. A. New Surface-Enhanced Raman Scattering Platforms : Composite Calcium Carbonate Microspheres Coated with Astralen and Silver Nanoparticles // Langmuir. 2013. Vol. 29. P. 4140–4147.

32. Creely C. M., Singh G. P., Petrov D. Dual wavelength optical tweezers for confocal Raman spectroscopy // Optics Communications. 2005. Vol. 245. P. 465–470.

33. Fan X., White I.M. Optofl uidic microsystems for chemical and biological analysis // Nature Photonics. 2011. Vol. 5. P. 591–597.

34. Hwang H., Han D., Oh Y.-J., Cho Y.-K., Jeonga K.-H., Park J.-K. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofl uidic SERS platform // Lab Chip. 2011. Vol. 11. P. 2518–2525.

35. Mullen K. I., Carron K. T. Surface-Enhanced Raman-Spectroscopy with Abrasively Modified Fiber Optic Probes // Anal. Chem. 1991. Vol. 63, № 19. P. 2196.

36. Zhang Y., Gu C., Schwartzberg A. M., Zhang J. Z. Surface-enhanced Raman scattering sensor based on Dshaped fi ber // Appl. Phys. Lett. 2005. Vol. 87. P. 123105.

37. Gu C., Zhang Y., Schwartzberg A. M., Zhang J. Z. Ultrasensitive Compact Fiber Sensor Based on Nanoparticle Surface Enhanced Raman Scattering // SPIE Proc. 2005. Vol. 5911. P. 591108.

38. Zhang Y., Shi C., Gu C., Seballos L., Zhang J. Z. Liquid core photonic crystal fi ber sensor based on surface enhanced Raman scattering // Appl. Phys. Lett. 2007. Vol. 90. P. 193504.

39. Yan H., Gu C., Yang C., Liu J., Jin G., Zhang J., Hou L., Yao Y. Hollow core photonic crystal fi ber surface-enhanced Raman probe // Appl. Phys. Lett. 2006. Vol. 89. P. 204101.

Full text (in Russian):
(downloads: 92)