Cite this article as:
Skaptsov A. A., Volkova N. V., Galushka V. V., Vidalia I. V., Zakharevich A. M., Konyukhov A. I., Kochubey V. I. Influence of Environment and Temperature on the Luminescent Properties of ZnCdS Nanoparticles. Izvestiya of Saratov University. New series. Series Physics, 2013, vol. 13, iss. 2, pp. 77-80. DOI: https://doi.org/10.18500/1817-3020-2013-13-2-77-80
Influence of Environment and Temperature on the Luminescent Properties of ZnCdS Nanoparticles
Dependence of the luminescence spectra of the non-stabilized ZnCdS nanoparticles placed in a biological environment on their temperature is investigated. It is shown that the intensity and the position of maximum luminescence of surface defects ZnCdS nanoparticles depends on the temperature and the properties of the biological environment until it is denatured.
1. Huang X. H., El-Sayed I. H., Qian W., El-Sayed M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods // J. Amer. Chemical Soc. 2006. Vol. 128, № 6. P. 2115–2120.
2. Maksimova I. L., Akchurin G. G., Khlebtsov B. N., Terentyuk G. S., Akchurin G. G., Ermolaev I. A., Skaptsov A. A., Soboleva E. P., Khlebtsov N. G., Tuchin V. V. Near-infrared laser photothermal therapy of cancer by using gold nanoparticles : Computer simulations and experiment // Medical Laser Application. 2007. Vol. 22. P. 199–206.
3. Goldberg S. N., Gazelle G. S., Mueller P. R. Thermal ablation therapy for focal malignancy : a unifi ed approach to underlying principles, techniques, and diagnostic imaging guidance // Amer. J. of Roentgenology. 2000. Vol. 174, № 2. P. 323–331.
4. Maksimova I. L., Akchurin G. G., Terentyuk G. S., Khlebtsov B. N., Ermolaev I. A., Skaptsov A. A., Revzina E. M., Tuchin V. V., Khlebtsov N. G. Laser photothermolysis of biological tissues by using plasmonresonance particles // Quantum Electronics. 2008. Vol. 38, № 6. P. 536–542.
5. Labeau O., Tamarat P., Lounis B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots // Physical Rev. Lett. 2003. Vol. 90, № 25. P. 257404-1–257404-4
6. Zhao Y. M., Riemersma C., Pietra F., Koole R., Donega C. D., Meijerink A. High-temperature luminescence quenching of colloidal quantum dots // Acs Nano. 2012. Vol. 6, № 10. P. 9058–9067.
7. Maestro L. M., Rodriguez E. M., Rodriguez F. S., la Cruz M. C. I., Juarranz A., Naccache R., Vetrone F., Jaque D., Capobianco J. A., Sole J. G. CdSe quantum dots for two-photon fl uorescence thermal imaging // Nano Lett. 2010. Vol. 10, № 12. P. 5109–5115.
8. Vossmeyer T., Katsikas L., Gienig M., Popovic I. G., Diesner K., Chemseddine A., Eychmiiller A. H. W. CdS nanoclusters : synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift // J. Phys. Chem. 1994. Vol. 98, № 31. P. 7665–7673.
9. Yang J.-M., Yang H., Lin L. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells // Acs Nano. 2011. Vol. 5, № 6. P. 5067– 5071.
10. Volkova E. K., Kochubey V. I., Konyukhova J. G., Skaptsov A. A., Galushka V. V., German S. V. Temperature dependence of the fl uorescence spectrumof ZnCdS nanoparticles // Proc. SPIE. 2013. Vol. 8571. P. 85712P-1–85712P-6.
11. Пивен Н. Г., Щербак Л. П., Фейчук П. И., Калитчук С. М., Крылюк С. Г., Корбутяк Д. В. Термостимулированные эффекты синтеза нанокристаллов сульфида кадмия // Конденсированные среды и межфазные границы. 2006. Т. 8, № 4. C. 315–319.
12. Kochubey V. I., Volkova E. K., Konyukhova J. G. Glucose and temperature sensitive luminescence ZnCdS nanoparticles // Proc. SPIE. 2012. P. 85533B–85533B.
13. Моргунов Р. Б., Дмитриев А. И., Джардимали- ева Г. И., Помогайло А. Д., Розенберг А. С., Tanimoto Y., Leonowicz M., Sowka E. Ферромагнитный резонанс кобальтовых наночастиц в полимерной оболочке // Физика твердого тела. 2007. Т. 49, № 8. C. 1436–1441.