Cite this article as:

Trunina N. A., Tuchin V. V. Visualization of Penetration of TiO2 Nanoparticles into Tooth Tissues Samples Using Optical Coherence Tomography. Izvestiya of Saratov University. New series. Series Physics, 2011, vol. 11, iss. 2, pp. 5-9.


Heading: 
UDC: 
57.085.4, 57.085.22, 535.361.22
Language: 
Russian

Visualization of Penetration of TiO2 Nanoparticles into Tooth Tissues Samples Using Optical Coherence Tomography

Abstract

Penetration of nanoparticles into the tooth tissues is of significant interest in solving the problems, related to the reduction of the tooth sensitivity, enamel strengthening and restoration and cosmetic bleaching. In the present paper we demonstrate the possibility to use optical coherent tomography for visualization of penetration of nanoparticles into the tooth tissues. As a result of longterm treatment of the tooth tissue sample with the suspension of titanium dioxide nanoparticles we observed significant (up to 5 dB) growth of the OCT signal intensity from the depth 300–600 μm which is an evidence of nanoparticles penetration into the enamel and dentin.

References

1. Uskokovic V., Bertassoni L. E. Nanotechnology in dental sciences : Moving towards a fi ner way of doing dentistry // Materials. 2010. Vol. 3. P.1674–1694.

2. Gupta J. Nanotechnology applications in medicine and dentistry // JICD. 2011. Vol. 2. P. 1–8.

3. Liu M.-H., Chan Ch.-H., Ling J.-H., Wang Ch. Filling in dentinal tubules // Nanotechnology. 2007. Vol. 18. P. 475104–475109.

4. Shrestha A., Fong S.-W., Khoo B.-Ch., Kishen A. Delivery of antibacterial nanoparticles into dentinal using highintensity focused ultrasound // JOE. 2009. Vol. 35, № 7. P. 1028–1033.

5. Suemori T., Kato J., Nakazawa T., Akashi G., Hirai Y. A new non-vital tooth bleaching method using titanium dioxide and 3.5% hydrogen peroxide with a 405-nm diode laser or a halogen lamp // Laser Phys. Lett. 2008. Vol. 5, № 6. P. 454–459.

6. Li L., Pan H., Tao J., Xu X., Mao C., Gu X., Tamg R. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks // J. Mater. Chem. 2008. Vol. 18. P. 4079–4084.

7. Trunina N. A., Lychagov V. V., Tuchin V. V. OCT monitoring of diffusion of clearing agents within tooth dentin // Proc. SPIE. 2009. Vol. 7443. P. 74432D.

8. Trunina N. A., Lychagov V. V., Tuchin V. V. OCT monitoring of diffusion of water and glycerol through tooth dentin in different geometry of wetting // Proc. SPIE. 2010. Vol. 7563. P. 75630U.

9. Трунина Н. А., Лычагов В. В., Тучин В. В. Исследование диффузии воды через дентин зуба человека методом оптической когерентной томографии // Опт. и спектр. 2010. № 2. С. 1246–1252.

10. Ghosn M. G., Sudheendran N., Wendt M., Glasser A., Tuchin V. V., Larin K. V. Monitoring of glucose permeability in monkey skin in vivo using Optical Coherence Tomography // J. Biophot. 2010. Vol. 3, № 1–2. P. 25–33.

11. Ghosn M. G., Tuchin V. V., Larin K. V. Nondestructive quantifi cation of analyte diffusion in cornea and sclera using optical coherence tomography // IOVS. 2007. Vol. 48, № 6. P. 2726–2733.

12. Ghosn M. G., Carbajal E. F., Befrui N. A., Tuchin V. V., Larin K. V. Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera // J. Biomed. Opt. 2008. Vol. 13, № 2. P. 021110-1–021110-6.

13. Zimnyakov D. A., Pravdin A. B., Kuznetsova L. V., Kochubey V. I., Tuchin V. V. Random media characterization using the analysis of diffusing light data on the basis of an effective medium model // J. Opt. Soc. Amer. A. 2007. Vol. 24, № 3. P.711–723.

Full text (in Russian):
(downloads: 52)