кластер

CLUSTER SYNCHRONIZATION DESTRUCTION AND CHAOS IN AN INHOMOCENEOUS ACTIVE MEDIUM

We show that in an inhomogeneous self-sustained oscillatory medium the destruction of perfect clusters of partial synchronization, that is induced both by varying the control parameter and by noise, leads to the onset of chaotic behavior. We study the mechanisms of chaos formation in both cases. It is demonstrated that as parameters change, the transition to chaos in the deterministic medium can result from a hard (subcritical) period-doubling bifurcation and can be accompanied by intermittency.

Complex Waveforms and Synchronization in Functional Model of Vascular Nephron Tree

We suggest functional model that qualitatively describes oscillatory processes in renal autoregulation. Our model consists of ensemble of two-mode oscillators that are coupled by means of two different pathways. The above coupling pathways count both the geometry of ensemble (tree-like structure or local interaction) and the specific action of individual oscillator (energy distribution netrwork or diffusive coupling). We study the typical operating regimes of suggested model as well as transitions between them.