laser interferometry

Method for Measuring Acceleration by the Spectrum of Self-Mixing Signal of Semiconductor Laser

Background and Objectives: Traditional methods for measuring the acceleration by changing the position of extremums on the time axis, as well as methods based on the use of least squares and wavelet analysis, require significant signal processing efforts: filtering and allocating extremums or significant time for processing an autodyne signal. The proposed method for measuring the acceleration of the spectrum of the self-mixing signal uses a well-established machine method of Fourier analysis, which is widely used for processing complex waveforms.

Laser Interferometry for Study of the Diffusion Process in Glycerol−Water System

Mutual diffusion process in glycerol−water system was studied by laser interferometry technique. Descriptions of optical schemes, experimental technique using multi-beam laser microinterferometer and method of digital interferogram processing are presented. Kinetics of spatial distribution of the refractive index of a medium during mass transfer process is determined and diffusion coefficients are found.

Self-mixing Interferometry of Distance at Wavelength Modulation of Semiconductor Laser

Theoretical description for method of distance measurement at alteration emission wavelength of semiconductor laser, operated in self-mixing regime, has been presented. The result of computer modeling of self-mixing signal at harmonic wavelength modulation of laser diode has been represented. Spectral harmonic selection of low-frequency spectrum of self-mixing signal for distance measurement has been theoretically substantiated.