solitary wave

Signal Propagation in Nerve Fiber

In this article a problem of signal propagation in nerve fiber is considered. Ohm’s losses and heat processes are taken into account. These permit to join two stages (metabolic and non-metabolic) of propagation and Na+ and K+ ions transmission through cell membrane connected with propagation. Electrodynamics of nerve fiber is described by telegraph equations with losses. Heat processes in fiber are described by an equation of entropy transfer. Ion motion at metabolic stage against the electro-chemical potential is described by negative conductance, responsible for the escape flow.

Mathematical and Computer Modeling of Nonlinear Waves Dynamics in a Physically Nonlinear Elastic Cylindrical Shells with Viscous Incompressible Liquid inside Them

This study focuses on the analysis of nonlinear wave propagation deformations in the elastic physically nonlinear cylindrical shells, containing a viscous incompressible fluid. Wave processes in an elastic cylindrical shell without interacting with fluid were previously studied from the standpoint of the theory of solitons. The developed model describes the processes in the tubes of relatively small diameter compared to the wavelength, such as blood vessels.