терагерцовое излучение

Detection of Terahertz Radiation in Graphene Structure under Conditions of Strong Spatial Inhomogeneity of the Plasmon Electric Field

Background and Objectives: Research of terahertz (THz) wave rectification in graphene shows the increase of the rectified current in p-n graphene structures relatively to graphene having only n- or p-type of conductivity. The p-n junctions in graphene may be created by both a chemical or electrical doping of graphene. There were discussed several physical mechanisms for wave rectification in graphene structures, that are the photothermoelectric effect, Drude heating of carriers by THz radiation and nonlinear plasmonic effects.

Plasmonic Rectification of Terahertz Radiation in a Grating-gated Graphene

The theory of the plasmonic rectification of terahertz radiation in a homogeneous graphene gated by a metal grating with an asymmetric unit cell is developed.

Total Conversion of Terahertz Wave Polarization by Graphene Microribbon Array without Magnetic Field

The polarization conversion of terahertz radiation by the periodic array of graphene microribbons located at the surface of a high-refractiveindex dielectric substrate (prizm) is studied theoretically. Polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that giant (up to total) polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons.