Cite this article as:
Bashkatov A. N., Genina E. A., Kamenskikh T. G., Tuchin V. V. Investigation of Mildronat ® Diffusion in Human Eye Sclera. Izvestiya of Saratov University. New series. Series Physics, 2016, vol. 16, iss. 3, pp. 167-177. DOI: https://doi.org/10.18500/1817-3020-2016-16-3-167-177
Investigation of Mildronat ® Diffusion in Human Eye Sclera
Background and Objectives: Diseases of retina and optic nerve are the major causes of vision loss. The use of new drugs in the treatment of these diseases can reduce the decline of visual function due to the involvement of additional mechanisms of cell metabolism compensation. Thus, investigation of the drug diffusion in sclera is an important task at estimation of dose necessary for achievement of enough drug concentration in internal eye tissues. Since Mildronat® facilitates restoration of ATP transport and can improve metabolic processes, purpose of this study is to investigate the permeability of sclera for Mildronat®. Material and Methods: The method of determination of diffusion coefficient was based on registration of time dependence changing of scattering characteristics of sclera due to partial replacement of interstitial fluid by Mildronat® what produced sclera reflectance decreasing. The reflectance measurements were carried out on ten samples of human sclera with fiber-optic spectrometer in the spectral range 450–1000 nm during 5–10 min. Processing and analysis of the experimental data were performed in the framework of free diffusion model on the base of inverse Monte Carlo simulation. Results: The measured value of Mildronat® diffusion coefficient in human sclera is (1.31±0.66) × 10-6 cm2/sec. Conclusion: The value of Mildronat® diffusion coefficient in the human sclera in vitro is important for determining dose of administered drug sufficient to achieve the internal parts of eye, time required for effective drug impact, etc., which is of great importance for the treatment of partial optic nerve atrophy and several other ophthalmic diseases.
1. Nichevilova E. N., Bereznikov A. I., Levchenko T. P. Ispol’zovanie mildronata v lechenii distrofi cheskih zabolevanij setchatki i zritel’nogo nerva [Use of Mildronat in the treatment of dystrophic diseases of retina and optic nerve]. Fedorovskie Chteniya – 2011, IX All–Russian scientifi c–practical conference with international participation [Fedorovskie chtenija – 2011, IX Vserossijskaja nauchno–prakticheskaja konferencija s mezhdunarodnym uchastiem]. Moscow, 2011. Available at: http://www.eyepress.ru/article.aspx?8965 (accessed 10 april 2016) (in Russian).
2. Mildronat [Mildronat]. Available at: http://www.medkrug.ru/medicament/show/7502 (accessed 10 april 2016) (in Russian).
3. Egorov E. A., Kamenskikh T. G., Seryanov Yu. V. Study of drug transportation in treatment of partial atrophy of optic nerve after physiotherapeutic infl uence. Klinicheskaya Oftalmologiya [Clinical Ophthalmology], 2007, vol. 8, no. 2, pp. 45–47 (in Russian).
4. Stolnitz M. M., Bashkatov A. N., Genina E. A., Tuchin V. V. Mathematical model of drugs and immersion liquids diffusion in human ocular tissues. Izv. Saratov Univ. (N.S.), Ser. Physics, 2008, vol. 8, iss. 1, pp. 15–20 (in Russian).
5. Orlova A. S., Bashkatov A. N., Genina E. A., Kolbenev I. O., Kamenskikh I. D., Kamenskikh Т. G., Tuchin V. V. Infl uence of 40%-glucose solution on a human corneal structure. Izv. Saratov Univ. (N.S.), Ser. Physics, 2014, vol. 14, iss. 1, pp. 11–19 (in Russian).
6. Bashkatov A. N., Genina E. A., Kochubey V. I., Kamenskikh Т. G., Tuchin V. V. Optical clearing of human eye sclera by aqueous 30%-glucose solution. Izv. Saratov Univ. (N.S.), Ser. Physics, 2015, vol. 15, iss. 3, pp. 18–24. DOI: https://doi.org/10.18500/1817-3020-2015-15-3-18-24 (in Russian).
7. Boubriak O. A., Urban J. P. G., Akhtar S., Meek K. M., Bron A. J. The effect of hydration and matrix composition on solute diffusion in rabbit sclera. Exp. Eye Res., 2000, vol. 71, pp. 503–514.
8. Bashkatov A. N., Genina E. A., Sinichkin Yu. P., Kochubei V. I., Lakodina N. A., Tuchin V. V. Estimation of the glucose diffusion coeffi cient in human eye sclera. Biophysics, 2003, vol. 48, iss. 2, pp. 292–296 (in Russian).
9. Genina E. A., Bashkatov A. N., Zubkova E. A., Kamenskikh T. G., Tuchin V. V. Measurement of Retinalamin diffusion coeffi cient in human sclera by optical spectroscopy. Optics and Lasers in Engineering, 2008, vol. 46, pp. 915–920.
10. Kamenskikh Т. G., Bashkatov A. N., Tuchin V. V., Genina E. A. Clinical–experimental basing of the usage of Cortexin in treatment of the partial optic atrophy. Klinicheskaya Oftalmologiya [Clinical Ophthalmology], 2006, vol. 7, no. 4, pp. 147–150 (in Russian).
11. Genina E. A., Bashkatov A. N., Tuchin V. V., Ghosn M. G., Larin K. V., Kamenskikh T. G. Cortexin diffusion in human eye sclera. Quantum Electronics, 2011, vol. 41, no. 5, pp. 407–413 (in Russian).
12. Kamenskikh Т. G., Bashkatov A. N., Tuchin V. V., Genina E. A. Experimental grounds of the usage of Retinalamin in the treatment of the partial optic atrophy. Saratov Journal of Medical Scientifi c Research, 2007, vol. 3, no. 1, pp. 77–79 (in Russian).
13. Bashkatov A. N., Genina E. A., Sinichkin Yu. P., Kochubey V. I., Lakodina N. A., Tuchin V. V. Glucose and mannitol diffusion in human dura mater. Biophysical J., 2003, vol. 85, iss. 5, pp. 3310–3318.
14. Genina E. A., Bashkatov A. N., Tuchin V. V. Tissue optical immersion clearing. Expert Review of Medical Devices, 2010, vol. 7, iss. 6, pp. 825–842.
15. Zubkina E. A., Genina E. A., Bashkatov A. N., Tuchin V. V. Optical clearing of eye tissues. Proceedings of the Samara Scientifi c Center of the Russian Academy of Sciences, 2011, vol. 13, no. 4, iss. 2, pp. 588–594 (in Russian).
16. Genina E. A., Bashkatov A. N., Sinichkin Yu. P., Yanina I. Yu., Tuchin V. V. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. Journal of Biomedical Photonics & Engineering, 2015, vol. 1, no. 1, pp. 22–58.
17. Tuchina D. K., Shi R., Bashkatov A. N., Genina E. A., Zhu D., Luo Q., Tuchin V. V. Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. Journal of Biophotonics, 2015, vol. 8, iss. 4, pp. 332–346.
18. Tuchin V. V., Maksimova I. L., Zimnyakov D. A., Kon I. L., Mavlutov A. H., Mishin A. A. Light propagation in tissues with controlled optical properties. J. Biomed. Opt., 1997, vol. 2, iss. 4, pp. 401–417.
19. Komai Y., Ushiki T. The three–dimensional organization of collagen fi brils in the human cornea and sclera. Invest. Ophthalmol. & Vis. Sci., 1991, vol. 32, iss. 8, pp. 2244–2258.
20. Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules, 1998, vol. 31, iss. 23, pp. 8382–8395.
21. Peck K. D., Ghanem A.–H., Higuchi W. I. Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharmaceutical Research, 1994, vol. 11, iss. 9, pp. 1306–1314.
22. Mitragotri S., Anissimov Yu. G., Bunge A. L., Frasch H. F., Guy R. H., Hadgraft J., Kasting G. B., Lane M. E., Roberts M. S. Mathematical models of skin permeability: an overview. Intern. J. Pharmaceutics, 2011, vol. 418, pp. 115–129.
23. Anissimov Yu. G., Jepps O. G., Dancik Y., Roberts M. S. Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Advanced Drug Delivery Reviews, 2013, vol. 65, pp. 169–190.
24. Frasch H. F., Barbero A. M. Application of numerical methods for diffusion–based modeling of skin permeation. Advanced Drug Delivery Reviews, 2013, vol. 65, pp. 208–220.
25. Khalil E., Kretsos K., Kasting G. B. Glucose partition coeffi cient and diffusivity in the lower skin layers. Pharmaceutical Research, 2006, vol. 23, iss. 6, pp. 1227–1234.
26. Bashkatov A. N., Genina E. A., Tuchin V. V. Measurement of glucose diffusion coeffi cients in human tissues. Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Ed. Valery V. Tuchin. Taylor & Francis Group LLC, CRC Press, 2009. Chapter 19, pp. 587–621.
27. Leonard D. W., Meek K. M. Refractive indices of the collagen fi brils and extrafi brillar material of the corneal stroma. Biophysical J., 1997, vol. 72, pp. 1382–1387.
28. Kohl M., Essenpreis M., Cope M. The infl uence of glucose concentration upon the transport of light in tissue–simulating phantoms. Phys. Med. Biol., 1995, vol. 40, pp. 1267–1287.
29. Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V. Estimation of wavelength dependence of refractive index of collagen fi bers of scleral tissue. Proc. SPIE, 2000, vol. 4162, pp. 265–268.
30. Tuchin V. V. Optika biologicheskih tkanej. Metody rassejanija sveta v medicinskoj diagnostike [Optics of biological tissues. Light scattering methods in medical diagnostics]. Moscow, FIZMATLIT, 2012. 812 p. (in Russian).
31. Wang L., Jacques S. L., Zheng L. MCML – Monte Carlo modeling of light transport in multi–layered tissues. Computer Methods and Programs in Biomedicine, 1995, vol. 47, pp. 131–146.
32. Nilsson H., Larsson M., Nilsson G., Stromberg T. Photon pathlength determination based on spatially resolved diffuse refl ectance. J. Biomed. Opt., 2002, Vol. 7, iss. 3, pp. 478–485.
33. Zhong X., Wen X., Zhu D. Look–table–based inverse model for human skin refl ectance spectroscopy: two layered Monte Carlo simulations and experiments. Optics Express, 2014, vol. 22, iss. 1, pp. 1852–1864.
34. Bohren C. F., Huffman D. R. Absorption and scattering of light by small particles. New York, John Willey & Sons Inc., 1983. 530 p.
35. Bunday B. D. Metody optimizacii [Basic optimisation methods]. Moscow, Radio and Communication. 1988. 128 p. (in Russian).
36. Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V. Optical properties of human sclera in spectral range 370–2500 nm. Optics and Spectroscopy, 2010, vol. 109, no. 2, pp. 197–204 (in Russian).
37. Kotyk A., Janacek K. Membrane Transport: An Interdisciplinary Approach. New York, Plenum Press, 1977. 348 p.
38. Genina E. A., Bashkatov A. N., Sinichkin Yu. P., Tuchin V. V. Optical clearing of the eye sclera in vivo caused by glucose. Quantum Electronics, 2006, Vol. 36, no. 12, pp. 1119–1124 (in Russian).
39. Cheruvu N. P. S., Kompella U. B. Bovine and porcine transscleral solute transport: infl uence of lipophilicity and the choroid–bruch’s layer. Invest. Ophthalmol. & Vis. Sci., 2006, vol. 47, iss. 10, pp. 4513–4522.
40. Edwards A., Prausnitz M. R. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AIChE J., 1998, vol. 44, iss. 1, pp. 214–225.
41. Geroski D. H., Edelhauser H. F. Transscleral drug delivery for posterior segment disease. Advanced Drug Delivery Reviews, 2001, vol. 52, pp. 37–48.
42. Olsen T. W., Edelhauser H. F., Lim J. I., Geroski D. H. Human scleral permeability. Effect of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest. Ophthalmol. & Vis. Sci., 1995, vol. 36, iss. 9, pp. 1893–1903.
43. Prausnitz M. R., Noonan J. S. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci., 1998, vol. 87, iss. 12, pp. 1479–1488.
44. Ghosn M. G., Tuchin V. V., Larin K. V. Depth–resolved monitoring of glucose diffusion in tissues by using optical coherence tomography. Optics Letters, 2006, vol. 31, iss. 15, pp. 2314–2316.
45. Ghosn M. G., Tuchin V. V., Larin K. V. Nondestructive quantifi cation of analyte diffusion in cornea and sclera using optical coherence tomography. Invest. Ophthalmol. & Vis. Sci., 2007, vol. 48, iss. 6, pp. 2726–2733.
46. Ghosn M. G., Carbajal E. F., Befrui N. A., Tuchin V. V., Larin K. V. Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera. J. Biomed. Opt., 2008, vol. 13, iss. 2, pp. 021110–1 – 021110–6.
47. Ghosn M. G., Carbajal E. F., Befrui N. A., Tuchin V. V., Larin K. V. Concentration effect on the diffusion of glucose in ocular tissues. Optics in Lasers in Engineering, 2008, vol. 46, pp. 911–914.
48. Larin K. V., Ghosn M. G., Tuchin V. V. Depth–resolved monitoring of analytes diffusion in ocular tissues. Proc. SPIE, 2007, vol. 6429, pp. 642918–1 – 642918–12.