Cite this article as:

Bibikova O. A., Staroverov S. A., Sokolov O. I., Dikman L. A., Bogatyrev V. A. PlasmonResonance Gold Nanoparticles as Drug Carriers and Optical Labels for Cytological Investigations. Izvestiya of Saratov University. New series. Series Physics, 2011, vol. 11, iss. 2, pp. 58-61.


Heading: 
UDC: 
576.3
Language: 
Russian

PlasmonResonance Gold Nanoparticles as Drug Carriers and Optical Labels for Cytological Investigations

Abstract

In this paper we report on the investigation of the influence of plasmon resonant gold nanoparticles (PRGNPs) and their complex with anticancer drug prospidin to the physiological functions (endocytosis, respiratory activity, viability) of tumor cell lines HeLa and SPEV2. We used the combination of several microscopic regimes to register the light scattering and fluorescence for visualization the cells and PRGNPs. The citratestabilized colloidal gold with average particle diameter 50 nm was used as plasmon resonant labels. The use of PRGNPs with subsequent staining by cationic fluorescent dye acridine orange enabled to visualize the labels by light microscopy and estimate their localization inside the cells by the confocal microscopy. We showed the enhancement of cytostatic activity of prospidin in the complex with the colloidal gold.

References

1. Nativo P., Prio, I., Brust A. M. Uptake and intracellular fate of surface-modifi ed gold nanoparticles //Acs Nano. 2008. Vol. 2, № 8. P. 1639–1644.

2. Fuente J. M., Berry C. C. Tat peptide as an effi cient molecule to translocate gold nanoparticles into the cell nucleus // Bioconjugate Chem. 2005. Vol. 165, № 5. P. 1176–1180.

3. Wang G., Stender A. S., Sun W., Fang N. Optical imaging of non-fl uorescent nanoparticle probes in live cells // Analyst. 2010. Vol. 135, № 2. P. 215–221.

4. Sun W., Wang G., Fang N., Yeung E. S. Wavelengthdependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells // Anal. Chem. 2009. Vol. 81. P. 9203–9208.

5. Diagaradjane P., Shetty A., Wang J. C., Elliott A. M., Schwartz J., Shentu S., Park H. C., Deorukhkar A., Stafford R. J., Cho S. H., Tunnell J. W., Hazle J. D., Krishnan S. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia : characterizing an integrated anti-hypoxic and localized vascular disrupting targeting strategy // Nano Lett. 2008. Vol. 8, № 3. P. 1492–1500.

6. Durr N. J., Larson T., Smith D. K., Korgel B. A., Sokolov K., Ben-Yakar A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods // Nano Lett. 2007. Vol. 7, № 4. P. 941–945.

7. Huff T. B., Hansen M. N., Zhao Y., Cheng J. Wei A. Controlling the cellular uptake of gold nanorods // Langmuir. 2007. Vol. 23, № 4. P. 1596–1599.

8. Seferos D. S., Giljohann D. A., Hill H. D., Prigodich A. E., Mirkin C. A. Nano-Flares : Probes for transfection and mRNA detection in living cells // J. Amer. Chem. Soc. 2007. Vol. 129. P. 15477–15479.

9. Li H., Rothberg L. Label-free colorimetric detection of specifi c sequences in genomic DNA amplifi ed by polymerase chain reaction // JACS. 2004. Vol. 126. P. 10958–10961.

10. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nature Phys. Sci. 1973. Vol. 241. P. 20–22.

11. Niks M., Otto M. Towards an optimized MTT assay // J. Immunol. 1900. Vol. 130, № 1. P. 149–151.

Full text (in Russian):
(downloads: 35)