Physics

Plasma Nanostructuring of Polymer Track Membranes Surface for Antiglaucomatous Surgery

Experimental results of fabrication and implantation of nanostructured track membranes as a drainage for refractory glaucoma surgery are presented. For nanostructuring of the membrane surface, a treatment by air plasma was applied.

Electromagnetic Interaction for Muonium and Muonic Hydrogen

The quasipotential approach variants for investigation of the exotic atoms spectra for muonium and muonic hydrogen are discussed. Similarity of exotic atoms spectra is used for build–up the correct perturbation theory. Dependence of fine shifts on normalizing multipliers is investigated.

The Dynamic Model of Termoelastic Properties on the Base of Anharmonize Oscillation Atoms

The role of the temperature dependence of tension rigidity and coefficient of linear expand in estimation the structure changes of an elastic medium on the base of analyse behaviour an anthropy is shown in terms of a model representation of an elastic rod as one-dimensional chains of oscillators.

Why the Refractive Index Couldn't Be Negative

It had been shown that for left-handed metamaterials and generally for negative refraction media the refraction index could not be introduced uniformly and could not be considered as real, especially as negative. This index for above referred media is not expedient.

Model of the Processes Nanostructure Formation during Plasma Spraying Hydroxyapatite Porous-Powder Coatings

We offer a physical model of the process nanostructure formation during plasma spraying hydroxyapatite coatings and described the thermodynamics of heating particle in the plasma torch. We analyzed thermal processes on the base and the formation of thermal fields in the system particle-base by plasma spraying. Possibly that the formation of amorphous coatings, consisting of submicron particles, happened because shear through by contact with the material and base and nanosized crystals appear as a result of very fast cooling (quenching) of the submicron structures.

Quasipotential Method of Spectrum Exotic Atoms

Fine and superfine splitting energy levels of exotics atoms positronium and anti–hydrogen is investigated in low order. It is showed that Formula Fermi for spectrum exotics atoms is generally. Individually property they spectroscopy is discussed. Live time is calculated of positronium.

Explicit Solutions of the Maxwell−Einstein Equations. II

This article is a continuation of the previous author's article on the same problem [1], Here choice of metrics discusses in detail, so as another possible metrics, like generalization of the Schwarzschild metric of massive body due to radiation of electromagnetic wave. A problem of lowering the initially spherical symmetry to axial one in solution’s level for Einstein−Maxwell (or Maxwell) equations due to fixation of z-axis of coordinate system and its recovery with the help of zero-modes is discussed.

Angarmonic Shift of Lines in Modelling Calculations of Vibrational Spectra for Carbonic Acid Dimer with Hydrogen Bond

Using by DFT/B3LYP methods scheme of value for angarmonic shift of vibrational lines in carbonic acid monomer and dimmer is described.

Spatio-Temporal Dynamics of Modulated cw Laser Beam in Spatial-Extended Nonlinear Medium

On the basis of spatio-temporal numerical model the dynamics of frequency-modulated cw laser beam propagating in resonance conditions is investigated. At modulation periods comparable with the atomic relaxation times the time and frequency dependence of the output intensity exhibits the manifestations of delayed medium response and resonance self-action. Time dependence of output intensity and spot size are measurement parameters. On the basis of phase portraits and power spectrum analysis we found a different dynamical regimes.

Non-Stationary Coherent Population Trapping in Frequency-Modulated Fields

Coherent population trapping (CPT) resonance formation is modeled numerically in a three-level Λ-system with one of the near-resonance fields being frequency-modulated. The model is based on density matrix equations in RW approximation with atomic relaxation properly taken into account. Slow modulation is shown to be equivalent to CW excitation with the frequency changed point by point.

Pages