morphology

Nanostructured Porous Silicon Layers Formation at Low Doses of γ-Radiation

We present results of experimental study of nanoporous Si (SiNР) structure formation by using the method of metal-stimulated chemical etching upon irradiation with small doses of γ-radiation directly in the process of production (in situ). It is shown that the radiation leads to an increase of the crystallization of SiNP structures obtained on previously irradiated substrates. Apparently, this can be explained by a decrease in the initial defectiveness of the silicon substrate due to irradiation with small doses of γ-radiation.

Dynamics of Morphological and Biochemical Changes in Laboratory Animals with Transplanted Kidney Cancer after Intravenous Injection of Gold Nanoshells

The effect of intravenously injected nanoshells on white outbred male rats with transplanted tumor of kidney cancer was studied. The blood biochemical parameters and morphological changes in the rat internal organs were examined during 24 h after nanoparticle injection. The most pronounced changes were observed 45 min – 2 h after nanoparticle injection and were reversible.

Spheroidal Graphite – Unique Morphological Formation of Carbon

Spheroidal graphite is little-known form of graphite. It is known that its presence affects the properties of gray cast iron post, typical steels. Research evidence that the spheroidal graphite is a unique layered spiral system of micro-and nanostructures, the inhomogeneous phase composition, structure and elemental composition with predominantly periodic alternation of closely spaced layers. Such systems can have properties and their combinations significantly different than the individual micro-and nanoparticles and composites based on them.

Morphology of Gas Sensitive Tin Dioxide Thin Films Operating at Room Temperature

Tin dioxide thin films sensing ethanol vapors above the room temperature (38° C) were deposited by RF magnetron sputtering onto silicon substrates. Microstructure measurements using scanning electron microscopy and atomic force microscopy demonstrate that samples consist of grains shaped rods with nanometer diameters which are oriented normally to the substrate surface. There are pores between the grains penetrating the entire thickness of the films.